1. ALGEBRA OF DIFFERENTIAL
FUNCTIONS

STRUCTURE

Introduction

Derivability
Derivative of the Composite of Two Functions
Rolle’s Theorem

Lagrange’s Mean Value Theorem (Or First Mean Value Theorem of
Differential Calculus)

Cauchy’s Mean Value Theorem
Darboux’s Theorem on Derivatives

Higher Order Derivatives

INTRODUCTION

Students have studied the concept of differentiability in lower classes. In the present
chapter we shall study chain rule of differentiability, Mean value theorems and their
geometrical interpretations.

DERIVABILITY

Derivability at an interior point. A function f defined on [a, b] is said to be

h

derivable or differentiable at c € (a, b) if Ifim exists.
—0

In case the limit exists, the same is called the derivative of f at ¢ or differential

d
co-efficient of f at ¢ and is denoted by f’(c) or e f(x) . The process of getting f’(c)

is called the differentiation.
Left hand derivative
lim W , if exists is called the left hand derivative of f at ¢ and is
h—0"
denoted by f(¢c).
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Calculus—I1 Right hand derivative
lim fle+h)-f(c)
h—0* h

NOTES denoted by f’(c?).

Clearly, f(c) exists if f’(¢?) and f(c*) both exist and are equal.

Another Form. A function f has a finite derivative f’(c) at ¢

‘m flc+h)—fc)

, 1f exists 1s called the right hand derivative of f at ¢ and 1is

iff I}—> 0 h - f ©
re., iff w =f'(c) +n wherenn — 0ash — 0
le., iff flc +h)=[f(c)+ hf’(c) + hn, wheren — 0 as h — 0.

h f’(c) is called the differential of f at c.

Derivatives at the end points. A function f defined on [a, b] is said to be

(a+h)-fla)
h

dertvable at aif [lim exists.

h—0*
The above limit is called the derivative of f at @ and is denoted by f(a) (by which

we mean [ ’(a%).
flb+h)—-f(b)

A function f defined on [a, b], is said to be derivable at b if hling_ 7

exists.
The above limit is called the derivative of f at b and is denoted by f”(b) (by which
we mean [’ (b)).

Derivability in an interval. A function f defined on an interval I is said to be
dertvable on I, if it is derivable at every point of the interval I.

Derived function. If a function f defined on an interval I is derivable on the
interval I, then there exists another function f’ with domain I such that the value of f
“for any x € 1is f’(x). The function f” is called the derived function of f or the derivative
of f.

Theorem. If a function is dertvable at a point, then it is continuous at the point.
Proof. Let f be derivable at a point a.

Then, ,,}l_)nlo w exists and is f"(a)
Now lim [f(a+ h) - fl@)] = lim [w h}

N h - lim b= f"().0=0.
- ]}1_)1110 fla+ h) = f(a)

= fis continuous at a.

Remark. While continuity of a function is a necessary condition for the derivability of
the function, it is not a sufficient condition as is clear from the following examples :

(1) Consider the function f(x) = | x | ,x€ R

x if x>0

By definition flx) = {_ x if x<0
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Here f(0)=0.
lim f(x)= lim (x=0
x—0" x—0"
lim /f®= lim x=0 = [(07)=/0)=/0"
x—0* x—0*

= the function is continuous at x =0

Now £/(0)= lim W=fO oy =20
h—0" h h—0" h
h)-f( h-0
/0% = lim fw-fo _ . h=0_,
h—0" h h—0* h
= [7(07) = f7(0%)

= [’(0) does not exist.

1
in— ifx#0
(ii) Consider the function f(x) = { " sin— if x
0 ifx=0

It is easy to see that f(x) is continuous at x = 0.

h sin 1 0
. + - .
Now £/(0)= lim w - lim —h
h=0 h h—0 h
= lim sin —, which does not exist as sin - oscillates between
h—0 h h

— 1 and 1 infinitely many times when h — 0. Hence f’(0) does not exist.

Geometrical Interpretation VA
Consider the graph of the function y = f(x).
Let P(c, f(c)) be a point on it.

Then, by definition, f’(c) = lim

xX—cC

fx)—f(c)
x—c
, X#C

But, @ -1 gives the slope of secant PQ,

x—c
where Q(x, f(x)). As x — ¢, the point Q moves along
the curve and tends to coincide with P and the secant

Aalgebra of Differential
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PQ taking the position PT, tangent at P. 0
Hence, f’(c) gives the slope of tangent to the curve at P.
Example. Prove that the function f defined by

fx)=1lx+1]+]x] VxeR

s continuous but not dertvable at x =—1, 0.

Sol. 1) Continuity of fatx=—-1 f(-=1)=0+1=1
lim f(x)le_i)rzlr [lx+1]+]xl]

x—>-1

= lim @+ D+ Eol=1 PIM={

g

X
X

if x>0
ifx<0
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Calculus—II

NOTES

lim f(x)= lim [lx+1 ]+ x]]

x—-1" x—>-1

= lim [@+D+(Cxo =1

x— -1
Thus 1113117 f)= f=1= lin% f(x)

= fis continuous at x =—1
Derivability of fat x =— 1

We have f’(-=1)= lim [+ ) - 1)
h—0" h

|-1+A+1|+|-1+A|-1

= lim (v IThl=-hash<0)
h—0" h

~ lim —h+1—h—1:_2
h—0" h

fr(_ 1+): lim f(_1+h)_f(_1)

h—0* h

o |-1+h+1|+|-1+A|-1 . h+1-h-1

= lim = lim ——=
h—0* h h—0* h

()2 19
= f’(= 1) does not exist
= fis not derivable at x =— 1.

(11) The case x = 0 can be dealt with on the same lines.

DERIVATIVE OF THE COMPOSITE OF TWO FUNCTIONS

4  Self-Instructional Material

Theorem. (Chain Rule of differentiability)
Let f be a function defined from a closed interval I = [a, b] to R. Lel g

be another function defined from an interval J to R, where f(I) C J. Let ¢ be a
function defined from I to R by :

0(x) = (gof)(x) = g(f(x)), v x e L
If (i) x, € (a, b) (1) f(x,) is an interior point of f(I) (117) f is differentiable at x, and

(iv) g is differentiable at f(x,), then ¢ is differentiable at x, and

0 (xy) = (g0f) " (xp) =8 (f(x)) [ "(xp)-

Proof. Let y = f(x) and y, = f(x,).
Since fis differentiable at x,, we have
w =f'(x)) + Mx), where A(x) = 0asx— x,
— X
= f(x) = flx) = (x —x) (f"(x) + Ax)) (1)
Since g is differentiable at y,, we have
(y) - g(yo) ,
EE <70 + o). where py) - 0 asy =y,
0



= 80 -8y = -y [0y + u®] .2 Aalgeblr;l of Differential
Now, O(x) — d(xy) = (gof)(x) — (gof) (x,) unctions
= 8(fw) — 8(flxy)) = g(») — 8(y,)

= (-0 [£0p) + nO)] (By @] NOTES
= /@) — )] [g0g) + ui)]
= (x—x) If () + M@ (€0 + w6l [By ()]

Hence, for x # x,

%ﬁixo) =8 W) + 1] If () + A(x)]

f being differentiable at x,, f is continuous at x, also. ..(3)

[@) Fy) = [(x)Ey,) as x — x,

and consequently uy) — 0as x — x,

Also AMx) > 0as x — x,

Taking limits as x — x, in (3), we get
0 (x)) = 8'(vy) [ (xy)

or (gof)’ (xg) = & (flxp)) [ (xy).

Derivative of the Inverse Function

Theorem. Let f: I — R be continuous and one-to-one on an interval I. Let
x, € L If f is differentiable at x, and f'(x,) # 0 then [ is also differentiable at f(x,)
and

1
1y -
0 () =
Proof. Let y = f(x) and y, = f(x,).
Since fis differentiable at x,, we have
M =17 (xy) + Ax), where A(x) — 0 as x — x,
X - %
= f(x) = flx) = (x —x) (" (x) + Ax)) (1)
Now, f1) =) = () — f(flxy)) = x — x, By def. of f7)
-y 2% x-x
Y=o Y=Y  flx)—flxq)
1
T (g + Mx) [By (1)
)=o) _ 1 2
- ¥y =Yo [’ (xg) + Mx) @

Since f is continuous at x,, it follows that /! is also continuous at f(x,) (= y,).
f) - flx) = 1) > (fx))
Y=Y = XX,
But, when x — x,, A(x) =0

Self-Instructional Material
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Calculus—II

from (2), lim ) -y _ 1
Y=o Y=Yo f, (xo)
NOTES 1 o
= (AN 7)) N, or (1Y (fix,) T

ROLLE’S THEOREM*

If a function f defined on [a, b] is such that it is
() continuous on [a, b] (1) derivable on (a, b)
@ii) fla) = f(b)

then there exists at least one ¢ € (a, b) such that f’(c) = 0.

Proof. If fis a constant function, then f’(x) =0 V x € (a, b) and we have nothing
to prove. So, let f be not a constant function.

Since fis continuous on [a, b], fis bounded and attains its bounds on [a, b].

Let M =1lu.b. of fand m = g.Lb. of fon [a, b].

Then, 3¢, d € [a, b], such that f(c) =M and f(d) = m. Clearly M = m

(as otherwise f(x) =M V x and hence would be a constant function). Therefore, either
of M and m is different from f(a) and f(b). (.- fl(a) = f(b))

Suppose that M = f(c) is different from f(a) and f(b). Then ¢ # @ and ¢ # b.
= ce (a,b).

Since fis derivable on (a, b), fis derivable at ¢ also.

feth)=f©) 4 o Fleth)—f©
h h—0* h

lim
h—0"

both exist and are equal each being equal to f'(c)

Since fi©)=M (=Lub. of /)
lim M >0 and lim f(c+h)—f(c) <0
h—0" h h—0* h

= f(©=0 and f’(c)< 0

= f7()=0.

Geometrical Interpretation of Rolle’s Theorem

Let the curve y = f(x) which is continuous on [a, b] and derivable on (a, b) be
drawn. Let A(a, f(a)) and B(b, f(b)) be points on the curve corresponding to x = a and
x=b. Also, f(a) =f(b) i.e., the ordinates of A and B are equal. Then, it is clear from the
figures that there is one point P(c, f(¢)) on the curve in Fig. (i) (and more than one point
namely P, P,, P., P, in Fig. (it)) where tangent is parallel to x-axis. That is, f"(c) = 0.

*After the name of a British mathematician Michael Rolle (1652—1719).
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P(c, f(c))

(a, f(a))
A B(b, f(b)) (a, f(a))

| P,
. A P, :
; ; )8 (. (o)
| |\ o /N o [
L ; X T L T L
a c b a ! C, ! Cs b
AV
Fig. ) Fig. (11)

Remarks 1. Converse of Rolle’s theorem is not true, i.e., f ’(x) may vanish at a point

¢ € (a, b) without f(x) satisfying the three conditions of Rolle’s theorem.

IA

X

1, <1
For example, the function f(x) = { 2 satisfies none of the conditions of
2, <1

[ ][ )
IN

Rolle’s theorem yet f’(x) = 0 for each x € (0, 1).

2. There may exist more than one real number ¢ € (a, b) such that f’(c) = 0 but

Rolle’s theorem ensures the existence of at least one such c.

it

3. The hypothesis of Rolle’s theorem cannot be weakened. Following examples illustrate

3x,0<x<1
(1) Consider f(x) = {
4,x=1
Here, f(x) is not continuous at x = 1 and f’(x) # 0 for x € (0, 1).
(@) Consider f(x) = | x |, [-1, 1].
Then, fis not differentiable at x=0¢€ (-1, 1). f'(x) 20 forxe (-1, 1) —{0}.
(@i1) Consider f(x) = «, [1, 2].
Here, f(1) =1, f(2) =2 and hence f(1) # f(2) but f’(0) =1 #0 forx € (1, 2).

4. Algebraically, Rolle’s theorem means that if f(x) is a polynomial function in x and

x=aand x =b are two roots of the equation f(x) = 0, then there is, at least one root
of the equation f’(x) = 0 which lies between a and b.

Another form of Rolle’s Theorem
If a function ‘f’ defined on [a, a + h] is such that it is
(1) continuous on [a, a + h] (1) derivable on (a, a + h)
@) fla) = fla + h).
Then there exists at least one real number 6, 0 <6 < 1 such that f’(a + 6h) =0
[Hint. Take b =a +h and ¢ = a + 6 h in Rolle’s theorem. |

To test the continuity of f(x) in a closed interval [a, b]
To test the continuity of fon a closed interval [a, b], we check three things :
(@) f(x) is not infinite on the closed interval [a, b].

3x% +5

For example, f(x) = ——— is infinite at x = 1. Hence fis not continuous on any

(x-1)

closed interval containing 11i.e., [0, 1], [0, 2], [1, 3].

Aalgebra of Differential
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Calculus-I1 (11) f(x) ts not imaginary on closed interval [a, b].

For example, f(x) = m will be imaginary when x < 1. Hence f(x) will be
discontinuous on any interval containing x < 1.
NOTES (ti1) f(x) has no break on the closed interval [a, b].
For example, f(x) =x2+3 forx<1=5x forx>1,

has a break at x = 1, so it may not be continuous at x = 1. At such points, we have to
check the continuity. The above function is continuous on the intervals of the type [a,
1], but not continuous on the interval containing 1 and of the type [1, b].

Alternatively, we may proceed as :

@) If f(x) is a polynomial function of x, then it is continuous for all real x as
polynomial functions are always continuous for real x.

(1) If f(x) is not a polynomial function, then we find f’(x). If /" (x) is finite, definite
and real in [a, b], then f(x) is derivation [a, b] and hence continuous for all x on [a, b].

To check the derivability of f(x) in (a, b), we may proceed as :

@) If f(x) is a polynomial function of x, then f(x) is derivable on (a, b) as a
polynomial function is always derivable for all real values of x.

@) If f(x) is not a polynomial, then find f’(x) and if f’(x) is finite, definite and
real on (a, b), then f1is derivable on (a, b).
Example 1. Verify Rolle’s theorem to the function
f(x) =e~sin x, [0, 1]
Sol. Here fx)=e*sinx, V x e [0, 7]
e~ and sin x are both continuous as well as derivable Vv x € R.
= e gin x1s continuous as well as derivable V x € R.
= e sin x is continuous as well as derivable on [0, 7] also.
Also f(0)=e"sin0=0, f(m)=e"sinn=0
f(0) = f(m)

Thus f satisfies all the 3 conditions of Rolle’s theorem on [0, n]. Hence Rolle’s
theorem is applicable on [0, «t].

Jc¢e (0, m) such that f’(c) =0.

But ['(x) =—e®¥sin x +e¥cos x
f')=0 = —e‘sinc+e‘cosc=0
= e‘(—smc+cosc)=0
= —sinc+tcosc=0 (. ec#0)
= tanc=1 = CZ%E(O,R),

Hence Rolle’s theorem is verified to fon [0, 7.

Example 2. Examine the applicability of Rolle’s theorem to the funciion
f(x) =2+ (x—1)¥?on /0, 2.

Sol. f'(x) = W , which is defined for every x except at x = 1. So, the
X —

function is derivable on (0, 2) except perhaps at x = 1.
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Also, f(0) = f(07) and f(2) = f(2).
Since derivability implies continuity, therefore the function is continuous on [0,
2] except possibly at x = 1.
Now lf)—fD) | =1 k=128 | <egfor | x—1] <32
i.e., for any £ > 0, 3§ (= £%2) such that
| fix) —f(1) | <g, whenever | x—1 | <39.
= fis continuous at x = 1 also.

Let us now check the derivability of f at x = 1.

\23
£ = lim fA+h)-f@) _ lim 2+(1+h-1) 2
h—0" h h—0" h
2/3 1
B hlgré* h o hlgrol* pv3

faf= tim fAHRO-FO oy 1

h0* h h—ot hY3
= f'aH=f'(0% = f’(1) does not exist
= fis not derivable on (0, 2)
= Rolle’s theorem is not applicable on [0, 2].
Example 3. Show that for no value of k, the equation x° — 3x +k =0 has two
different roots in (0, 1).
Sol. Let f(x)=x>-3x+Fk

Let, if possible, the equation f(x) = 0 has two different roots o, f in (0, 1), f(x)
being a polynomial, fis continuous and derivable v x € R.

= fis continuous on [o, B] and fis derivable on (o, ).

Also fle)=fPB) =0
.. by Rolle’s theorem, 3 ¢ € (o, ) such that

fe)=0 = 3¢2-3=0 (- fx)=3x2-3)
= ¢ =+ 1 which contradicts that ¢ € (o, B) < (0, 1).

Hence the result.
Example 4. Prove thatifa,, a,, ...... , a,, € Raresuch that
T )
n+l n 2 "
then there exists at least one x € (0, 1) such that a,x" +a,x" ! +... +a, = 0.
Sol. Consider the function

xn+1 xn xz

X)=a, —— ta, — +..t+ta — ta;

f(%’) (10 n+1 (11 n an—l 2 a,x

Then, f(x) being a polynomial, f is continuous and derivable Vv x.
= f1is continuous on [0, 1] and derivable on (0, 1). Also

a

Qo a,_ _ .
= D= —"-+—+..+ 2L +q =
f(0) =0, f(1) n+1+ n 9 a, =0 (given)

by Rolle’s theorem, 3 at least one ce (0, 1) such that f’(c) = 0.
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Calculus—I1 Now ff@W=aqp"+ax"'+. . +a x+a,
/’(c) = 0 for at least one ¢ € (0, 1)
= a, "+ a,x" 1+ ... +a, vanishes at least once in (0, 1).
NOTES Example 5. Using Rolle’s theorem, show that between any two roots of e cos x =
1, there exists al least one root of e* sin x — 1 = 0.
Sol. Let o and B be any two different roots of e* cos x = 1.

e* cosa—1=0 and ef cosp—-1=0

= cosa=e* and cos B = e® (D)

Consider the function f defined by
f(x) = e™—cos x on [a, B].
[(x) is clearly continuous on [o, B] and differentiable on (o, f).

Also, floy=e™* —cos =0

f®=e" —cos p=0 [By (1]
[ satisfies all the conditions of Rolle’s theorem on [, f].
There exists ¢, oo < ¢ < such that f'(c) =0
= —e“+sinc=0 = esinc—1=0 and ce€ (o, B)
= the equation e*sin x — 1 =0 has at least one root ¢ between any two
roots of e* cos x — 1 = 0.
Example 6. If f(x) is a polynomial, then show that between any two consecutive
roots of f'(x) = 0, there lies at the most one root of f(x) = 0.
Sol. Let a, b be two consecutive roots of f’(x) = 0 such that a <b.

Suppose that f(x) = 0 has two different roots o, p such that o, f lie between
aand b.

flo)=f(B)=0
Also f(x) being a polynomial is continuous on [, ] and derivable on (o, ).
Thus f satisfies all the conditions of Rolle’s theorem.
There exists at least one ¢ € (o, ) such that f'(c) =0
= cisarootof f’(x) =0

Between two consecutive roots a and b of f’(x) = 0, there lies a root ¢ of
f'(x)=0 [- ¢ lies between a and b]

which is a contradiction. Hence our supposition is wrong.

Between any two consecutive roots of f’(x) = 0, there lies at most one root of

f(x) = O

EXERCISE 1

1. Verify Rolle’s theorem for the following functions :

@) f(x) = (x—a)™ (x—b)" on [a, b] where m, n e N

(if) f(x) = 2% — 6x + 8 on [2, 4].
2. Discuss the applicability of Rolle’s theorem to the function f(x) = | x| on [~ 1, 1].
x?+1, 0<x<1

3. Verify Rolle’s theorem for the function f(x) = .
3—x, 1<x<2
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10.

11.

If f(x) is a polynomial in x and f’(x) # 0 anywhere between a and b, show that f(x) can
have at the most one root in [a, b].

[Sol. If possible, let o, B be two different roots of f(x) = 01n [a, b]. f(x) being a polynomial
in x, is continuous on [a, B] and differentiable on (a, B). Moreover f(o) = f(B) = 0.

. by Rolle’s theorem, 3 at least one ¢ € (a, B) such that f”(c) =0, which is a contradiction.]

If the functions f, ¢, y are continuous on [a, b] and derivable on (a, b), show that there
exists a point € € (a, b) such that

fl@) ¢ yla)
f® o) wb) =0
@ o i
fla) ola) y(a)
[Hint. Let F@) =|f®) ¢bB) wb)
fx) olx) wyix)
F is continuous on [a, b] and differentiable on (a, b). Also F(a) = F(b) = 0.
By Rolle’s theorem, F’(€) = 0 for & € (a, b) and the result follows.]
If f'(x) and g’(x) exist for all x € [a, b] and g'(x) #0 V x € [a, b], then prove that there
floo-fl@ _ f
gb) -glo g ©
[Hint. Apply Rolle’s theorem to the function ¢(x) = f(x). g(x) — g(x) f(a) — f(x) g(b).]

If f and g are two functions continuous on [a, b] and derivable on (a, b), show that
there exists ¢ € (a, b) such that

fla) f®) fl@) f(c)
gla) gb) gla) gl
[Hint. Apply Rolle’s theorem to the function

fla) f(x)
gla) g

exists some ¢, @ < ¢ < b such that

=(b-a

o) =

x—a |fl@ fb) }
- on [a, b].
b-a | gla) gb)

If a function is such that its derivative f’, is continuous on [a, b] and derivable on (a, b),
then show that there exists a number ¢ between a and b such that

1
O =fay+b-a)f@+5 b- a)* f” (c).
[Hint. Consider ¢(x) = f(x) + (b — x) ['(x) + (b — x)?> A, where A is such that ¢(a) = ¢(b)
Apply Rolle’s theorem to ¢ and get A= % f”(x).:'

If a function is twice derivable on [a, a + h], then show that
h2
fla+h=f@+hf" @+ 57 /" (@+6h), 0<6<L

Show that there is no real number k, for which the equation x? — 3x + k = 0 has two

different roots on [0, 1].
If f”1is continuous on [a, b], show that

flc) = (b—cj fla) + (c—aj f(b) + 1 (c—a) (c=Db) f” (€) where ¢ and £ both lie on [a, b].
b-a b-a 2

[ Hint. Consider the function ¢(x) = f(x) — b-x fla) — x—a f(b) — 1 (x—a) (b-x) A,
b-a b-a 2

(D)
where A is a constant such that ¢(c) =0.

Apply Rolle’s theorem to the function ¢ on the intervals [a, ¢] and [c, b].

Aalgebra of Differential
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Calculus—IT Then, O'(P)=0,¢(@g=0fora<p<c,c<qg<b.

and ¢’(x)=f’(x)+w +1 @x—-a-Db) A
b-a 2
NOTES Now, apply Rolle’s theorem to ¢" (x) on [p, q].
There exists € € (p, q) such that f”(€) =0
= 0=/"O+A = A=-["©

Using this value of A in (1), we get

00 = ) — L =% flay— £=@

1 ”
— T2 B+ 5 @) (=) Q)

Since ¢(c) =0, we have

—C c—a

0= 3= f@- S5 )+ L e-w b @,
where ¢, &€ [a, b] (v a<p<c,c<g<bandfe (p, q)]

LAGRANGE’S MEAN VALUE THEOREM* (OR FIRST
MEAN VALUE THEOREM OF DIFFERENTIAL CALCULUS)

If a function f defined on [a, b] is

() continuous on [a, b] and (t1) derivable on (a, b)
then there exists at least one real number ¢, a < c¢ < b such that
fo)-fw) .
b-a '

Proof. Consider a function ¢(x) = f(x) + Ax

where A is a constant to be determined such that ¢(a) = ¢(b). This gives us

b _
1) -fla) 2_’;(‘1) ()

Now, (i) Since [ is continuous on [a, b] and Ax is continuous on [a, b], therefore,
0 1s continuous on [a, b].

A=—

(1) Since [ is derivable on (a, b) and Ax is derivable on (a, b), therefore ¢ is
derivable on (a, b).

@) o(a) = o(b) (By def. of ¢).
Thus, ¢ satisfies all the conditions of Rolle’s theorem on [a, b].

Therefore, there exists a real number ¢, a <c¢ < b,

such that 0’(c)=0
But, ') =/f"(x) + A
’ 0=9¢'@=f(+A= [f'()=-A (2
b) -
.. from (1) and (2) —f( b)— Z(a) =f’(c) or fb) —fla)=®m—-a) f'(c)

Another form of statement

If in the statement of the theorem, b is replaced by a + h, then the number ¢
between a and b may be written as a + 6h, 0 <6 < 1.

*After the name of French Mathematician Joseph Louis lagrange (1736-1813).
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fla+h) - f(a) =hf’(a + 6h)
or fla+h)=f(a)+hf’ (a+6h),0<06<1
Cor. 1. If fis continuous on [a, b] and is differentiable on (a, b), then
@) f'(x) =0V x€ (a, b) = f1is constant on [a, b].
@) f'(x) >0 V x € (a, b) = fis strictly increasing on |[a, b].
@) f'(x) <0V x € (a, b) = f1is strictly decreasing on [a, b].

Proof (1). Let x, x, (where x, < x,) be any two distinct points of [a, b]. Since
f is continuous on [a, b], f is continuous on [x,, x,]. Since f is differentiable on (a,
b), f is differentiable on (x,, x,).

Therefore, by Lagrange’s mean value theorem, there exists at least one ¢, x, <c¢
< x, such that

f(xz)_f(xl)

vy —x f'©.

But f')=0 [+ ce (¥, x)C(a,b)andf'(x) =0V xe (a, )]
f(xg) _f(xl) =0

= flxy) = flx)), ¥ x;, x, € [a, b]

Thus, the function has the same value and is therefore constant on [a, b].

@@1) Let x, x, (where x; <x,) be any two different points of [a, b]. Then, proceeding
as in case (i) above, we have

f(xz)_f(xl)

=f'(c), for some ¢, x; <c <x,.

X9 — X

But f'c)>0 [ f/®)>0,V xe (a, b)]
fixy) — fx) >0 = [flxy) > flxy.

Thus, Xy > X, = flxy) >f(x), V x;, x, € [a, b]

. f1is strictly increasing on [a, b].

Remark. For a strictly increasing function f, the derivative f’(x) need not be
strictly positive. For example, consider f(x) = x3, x € (- 1, 1). This function f is strictly
increasing. But f’(x) = 3x% which is zeroat x=0¢ (- 1, 1).

@1i) Let x,, x, (Where x, <x,) be any two different points of [a, b].
fxg)— f(xq)

Xg — X1
= flxy) —f(x;) <0 (v f(e<0asf'x)<0Vne (a,b)

X, <X, = fleg) < flx)

fis strictly decreasing on [a, b].

—_ ’
=f(), x, <c<ux,

Cor. 2. If two functions f and g are
() continuous on [a, b] (1) dertvable on (a, b)
@ii) f'(x) =g'(x) ¥V x € (a, b),
then f— g is a constant function.
Proof. Let F(x) = fix) —g(x), V x € |a, b]
Since f and g are continuous on [a, b]

Self-Instructional Material
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Calculus—II .. F is continuous on [a, b]

Similarly F is differentiable on (a, b)

Also, Fx)=f"x) —g’'x) =0, V xe€ (a, b).
NOTES = Fis a constant function on [a, b] i.e., f—g1s a constant function on [a, b].
Geometrical Interpretation. Geometrically, Lagrange’'s Mean Value Theorem

says that between two points A and B on the graph of f, there exists at least one point
C where the tangent is parallel to the chord AB.

Ylk Y 4

>

QO -

f(a)

Ol —

X O

Y’ Y’

Remark. The hypothesis of Lagrange’s Mean Value Theorem cannot be weakened, as is
clear from the following examples :

(1) Consider the function f defined on [1, 2] as follows :

2, «x=1
f)={x%, 1<x<2
1, x=2

Then, fis continuous as well as derivable on (1, 2) but is not continuous at 1 and 2. Thus,
first condition is violated ?

Also —f(2)_f(1) =—1
’ 2-1
[(x)=2x, 1<x<2
= [/@)>0for 1<x<2
Thus, %:ﬁf’(x) for any x € (1, 2).

(i1) Consider the function f(x) = | x | defined on [~ 1, 2].

Then, f is continuous on [~ 1, 2] and derivable at all points of (-1, 2) except at
x=0. (Thus, second condition is violated).

L -1, ifxe(-10)
Row, ”‘”‘{ 1, if x€(0,2)
f(2)—f(—1)_1
Also T2-C1D —3
2)-f(-1
Thus, M # [’(x) for any x € (-1, 2).

2-(-1
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Aalgebra of Differential

CAUCHY’S MEAN VALUE THEOREM Functions
(Second Mean Value Theorem)
If two functions f, g defined on [a, b] are NOTES
() Continuous on [a, b] (1) dertvable on (a, b)

@it) g (x)# 0 for any x € (a, b)
then, there exists at least one real number ¢ € (a, b) such that
fio)-fla) _ f1e)
gb)-—gla) g

Proof. Notice that g(a) # g(b) because otherwise, in view of conditions () and
(1), g will satisfy all the conditions of Rolle’s theorem and hence g’(c) =0 for some
¢ € (a, b) contrary to (zi1) Consider the function ¢ defined by

0(x) = fx) + A g(x), x € [a, 0] (D)
where A is a constant to be determined such that ¢(a) = ¢(b)
__ fb)-f(a) @)
&) - gla)

Now, the function ¢, being the sum of two continuous and derivable functions, is
itself

(1) continuous on [a, b],
(11) derivable on (a, b)
and (11) ¢(a) = o(b) (by definition of ¢)

¢ satisfies all the three conditions of Rolle’s theorem. Hence, there exists at
least one point ¢ € (a, b) such that ¢’(c) = 0.

But, 0@ =@+ AZ®) [From (1)]
= 0=f"(c)+Ag'(c

f@ B -f(a)
- 2o N ab—s@ By (2]

Another form of statement
If two functions f, g defined on [a, a + h] are (1) continuous on [a, a + h], (it)
derivable on (a, a + h) and (1it) g'(x) # 0 for any x € (a, a + h), then there exists al
least one real number 0, 0 < 0 < 1 such that
fla+h) - fla)  fla+6h)
gla+h)—ga)  g'la+0h)

Note. (i) Lagrange’s Mean Value Theorem can be deduced from Cauchy’s Mean Value
Theorem by taking g(x) = x.

1) Cauchy’s Mean Value Theorem cannot be deduced by applying Lagrange’s Mean Value
Theorem separately to f and g because then, we get

o) fil) _ fle)
gb)-gla) 8'lcg)’

Physical Interpretation of Cauchy’s Mean Value Theorem

) -
fb)-fla)  f'(c) . b-a _ fe)
<) — g(a) = ) may be rewritten as 2B 5@ 20)

b-a

where ¢, and c, may not be equal.
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Calculus—I1 which shows that the mean rates of increase of two functions f and g in an interval is
equal to the ratio of the actual rates of increases of the two functions at some point
within the interval.

NOTES Another form of Cauchy’s Mean Value Theorem
If two functions f and g defined on [a, a + h] are
(1) continuous on [a, a + h]

(11) derivable on (a, a + h)

(1) g'(x) # 0 for any x € (a, a + h) then there exists at least one real number 0, 0 <
0 < 1 such that

fla+h)-fla) ['(a+6h)
gla+h)-gla) g'la+6h)"

Example 1. Show that if x > 0, log (1 +x) > 7 X Also show that log (1+x)
+x x
monotonically decreases as x increases from 0 to .
Sol. Let flx) =log (1 +x)— .
1+x
) 1 (Q+x).1-x.1
x = —
') 1+x (1 +x)?
1+x)
fis monotonically increasing when x > 0.
for x> 0, f(x) > f(0)
= log(1+x)— —— >logl = log(1+x)——— >0
BTV T T BTV T I s
= log (1+x) > —— (1)
g ! 1+x
log (1 +
Let Fx) = og(1+x)
x
x. —log(1+x)
, +x
F(x) = 2
F'(x) <0forx>0 [By ()]

the function F is monotonically decreasing for x > 0.

Example 2. If [ is a twice differentiable function on [a, b] such thal
f(a) = f(b) = 0 and f(c) > 0 for a < c¢ < b, prove that there is al least one & between a
and b for which ") < 0.

Sol. Since [ is twice differentiable on [a, b], therefore f and f ’ are both
continuous and differentiable on [a, b] and hence, in particular, continuous and
differentiable on [a, ¢] and [c, b] for a < ¢ < b.

Applying Lagrange’s mean value theorem to fon [a, ¢] and [c, b], we have

fle)—fla)

=f"(c)), a<c, <c .1
c—a

16  Self-Instructional Material



) -f(e) Aalgebra of Differential

and b_c =f'(cy), c<cy<b ..(2) Functions
But fla)=fb) =0 (given)
, B f(C) , B f(C) NOTES
.. From (1) and (2), f'c)= c—a and f'(c,) = — b_c ..(3)
Applying Lagrange’s mean value theorem to f” on [c,, ¢,], we have
M = f”(&)’ Where Cl < & < 02‘
€y~ €
But, from (3), f’(c;)>0and f'(c,) <0 (- flc) > 0 for a <c <) (given)
: /7€) <0, for at least one & between a and b.
Example 3. Using Lagrange’s mean value theorem, show that
7 +_v2 <tantv—tantu < Iv+—uu2 if0<u<v.
4
Also, deduce that T2 <tan! i3 Iy 1 )
4 41 4 4 8
Sol. Let flx)=tan' x, u<x<v.
1
= "(x) =
/'@ 1+
applying Lagrange’s Mean Value Theorem to f, we get
tanlv—tan' u 1
= s, u<c<uv.
v-u 1+c
But,c>u = 12< 12
1+c 1+u
1 1
and c<v — <

1+c¢?  1+0°

1 tan'v-tanlu 1
< <

1+ 02 v-u 1+ u?

v-u 1 1 v-u
= o <tan - v-—tan - u < 5 -

1+v 1+u

5
For the second result, put v = 1 andu=1.

Example 4. Use Lagrange’s mean value theorem to prove that
I+x<e*<1+xe’, Vx>0.
Sol. Consider the function o(f) = e'.

Then, ¢ is continuous on [0, x] and derivable on (0, x). .. ¢ satisfies all the
conditions of Lagrange’s Mean Value Theorem.

there exists a point ¢ € (0, x) such that

ox) —0(0) _
x

& =¥©
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e* -1
= ~-0 =e° = e*—1=uxe (D)
But, O<c<x = el<e<er
NOTES = l<e‘<e” = x<xe <xe*
= x<e'—1<uxe [By (1]

l+x<e’<1l+xe. Vx>0

tan x x T
Example 5. Show that > — ,0<x<—.
X sin x 2
tan X T
Sol. Now, LA 0<x<—
X sin x 2
) sin x tan x — x2 i
if - >0, O<x<— .
X sin x 2

T .
Since x sin x> 0 for 0 < x < 2 it is enough to prove that sin x tan x —x? > 0.

) i
Let f(x) = sin x tan x—x2,0<x<§ )
= f’(x) = cos x tan x + sin x sec? x — 2x

=gin x + sin x sec? x — 2x
Sign of f’(x) cannot be determined because of the presence of 2x.
But, f”(x) = cos x + cos x sec? x + 2 sin x sec? x tan x — 2

=(ysecx — Jeosx)?+2tan?xsecx>0, 0<x< g )
[’(x) is increasing.
Also, f7(0) = 0. Therefore, f'(x) >0 for 0 <x < g )
Again, since f ‘(x) > 0, f(x) is increasing and because f(0) = 0, therefore,

f(x)>0,f0r0<x<g‘

tan x X n
Hence, > — ,0<x< —.
x sin x 2
. . ) sin x )2 T
Remark. The above inequality can also be written as : cos x < ( ) ,0<x< PR
X
sina —sin b i
Example 6. Show that ———— =colc, 0 <a<c<b< — .
cosb —cosa 2
Sol. Let f(x) =sin x and g(x) =cosx, x€ (a, b).
= f’(x) =cos x and g’(x) =—sin x.

Since fand g are both continuous as well as differentiable, therefore by Cauchy’s
Mean Value Theorem on [a, b], we get

fb)-fla) f'c)

=——~,ce (b
gb)—gla)  glo) €@V
sinb -sina cos ¢ sina —sinb
= = - = ———— =cotc, a<c<b.
cosb-cosa -—-sinc cosb —cosa
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1 1 Aalgebra of Differential
Example 7. If f(x) = e g(x) = o then show that in Cauchy’s mean value Functions
theorem, c is the harmonic mean between a and b.
1_1
f®)-fla) _ f'c) b2 42 —2c? NOTES
Sol. = = = /= o)
gb)-gla) g 1 1 -c
b a
a+b 2 2ab
= = — = c¢= )
ab c a+b
EXERCISE 2

1. Examine the validity of the hypothesis and the conclusion of Lagrange’s Mean Value
Theorem for the following functions :

i) f@=1x1xe[-11] (i) f() = x(x - D —2), x€ [0, 1]
@it) flx) =x'? xe [-1, 1] @) fx) =2x>—-Tx+ 10, x € [2, 5].
2. Use Lagrange’s Mean Value Theorem to prove that | sinx—siny | < | x—y |,V ye
R.
[Hint. Consider ¢(f) =sin t, t € [x, y].
Apply Lagrange’s Mean Value Theorem to ¢() and use | ¢’(f) | = | cost | <1.]
1
3. Ifa=-1,b21, and f(x) = =l show that the conclusion of Lagrange’s mean value

theorem are not satisfied on the interval [a, b] but the conclusion of the theorem is true
ifb>1+4/2.

[Hint. f(0) is not defined, so let f(0) = A, some finite quantity. Since f’(0¥) — — o and f
’(07) — oo, fis not differentiable at x=0 € (a, b). So, conditions of mean value theorem are
not satisfied.

But MZW(C}, a<c<b
1 1 d 1 1
= — - =(b-a) {} =b-a) {-—
6] lal dx |x|],_, le
1 B 1 _bP+b 3
= b—1_(b+1)(_czj = 2= — («+ a=-1)
b2 +b b +1) b+1
2 .. 2 2 2
= b1 <b* (v b*>c) = b1 <b* = b—1<b
= b+1<b2-b or b2 -2b-1>0
= b-1)2>2 = b-1>J2 = b>1+ 2]

4. Ifin the Cauchy’s mean value theorem, we take f(x) =e* and g(x) = e, show that ‘¢’ is the
arithmetic mean between a and b.

DARBOUX’S THEOREM ON DERIVATIVES

If a function f defined on [a, b] is such that
(@) fis dertvable on [a, b] and
@) [ (a) and f (b) are of opposite signs
then there exists at least one point ¢ € (a, b) such that f'(c) = 0.
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Calculus—II

it is continuous on [a, b] and hence f is
bounded on [a, b] and attains its bounds.

Proof. Since fis derivable on [a, b], Y4 f(a) >0

f(€)=0

Let M=1lu.b. of fand m =g.Lb. of f

NOTES on |[a, b] f(b) <0

or

20 Self-Instructional Material

Then, 3 &, n € [a, b] such that
M=fE) and m=fm)  ..(1)
Since f’(a) f’(b) <0, either
f(@)>0 and f'(b) <0

f ¢ t ) + > X
f@) <0 and f’ (b) > 0. Of a2 ¢-h &t g+n b
Suppose (@) >0 and f’(b) <O0.
Now, f’(@) >0 = there exists §; > 0 such that f(x) > f(a) for x € (@, a +3,)
)
f'(b) <0 = there exists §, > 0 such that
f(x) > f(b) for x € (b -3, b) ..(3)
from (1), (2) and (3), we get
E+a and £E#b sothat a<&<b ..(4)
Also, f(x) <€), ¥ x€ [a, b]. (- f&=Llub. of fon [a, b))

Now,a<&<b = there exists some h>0

such thata<&—-h<&<&+h<b.

= fE=h) —-f©) <0 and fE+h)—f(€) <0
- wzo and wga(}pm

Taking limits as h — 0, we get
f7€)=0 and f'(€)<0
Since fis derivable on [a, b], f(€) exists and f'€) =f"E) =" = 0.

ie., ['©=0, a<g<b.

Hence, there exists ¢ (= &) such that f’(¢) =0, ¢ € (a, b).

Similarly, we can prove that there exists ¢(= &) such that f’(c) =0, ¢ € (a, b) when
f’(@) <0and f/(b) > 0.

Remark. Note the similarity between the above theorem and the intermediate value
theorem.

(Darboux’s Intermediate Value Theorem for Derivatives)
Cor. 1. If a function fis dertvable on [a, b] and f’(a) # f'(b), and k is a number

lying between f'(a) and [’(b) ; then there exists at least one point ¢ € (a, b) such that

f'(c)=kFk.

Proof. Let & be any real number between f’(a) and f’(b).
Define a function F on [a, b] such that F(x) = f(x) — kx.

Since f is derivable on [a, b], F is also derivable on [a, b] and

Fx) =f'(x) — k. Now, F'(a) =f’(a) — k and F'b) = f'(b) — k

Since k lies between f’(a) and f’(b), F'(a) and F’(b) are of opposite signs.
Hence, by Darboux’s theorem, there exists ¢ € (a, b) such that
F@)=0 = f’(c)=Fk.



Cor. 2. If fis a function derivable on a closed interval I, then image of I under f
" 1s etther an interval or a singleton.

Let image of I under f” be J.
Since fis derivable on I, J # ¢.

Now, suppose J contains two points k&, and k,, then there exist x,, x, € I such
that

f () ="k, and f’(x,) =k,
If k, # k,, then suppose k lies between k; and k,. Then, by Darboux’s theorem,
there exists ¢ € (x;, x,) such that f’(c) = k and hence k € J.

Thus, by, k,e J, k %k, = [k, k).

= Jis an interval.

Cor. 3. If f'(x) # 0 for all x € (a, b) then [’(x) retains the same sign positive or
negative on (a, b).

Proof. Let, if possible, there exist x,, x, € (a, b)
such that f'(x) <0 and [’ (x,) >0

by Darboux’s theorem, there exists ¢ € (x;, x,) C (a, b) such that f’(c) = 0.
But this is against the given hypothesis that f’(x) # 0 for x € (a, b)
Hence, f’(x) retains the same sign for all x € (a, b).

Example 1. If fis dertvable on [a, b] then show that there is a point ¢ € (a, b)
such that

[ =5 @+ /)]

Sol. Let k=5 I @+ [ O]

Then, k lies between f’(a) and f’(b)
by Darboux’s theorem, then there exist ¢ € (a, b) such that f'(c) =k

1
= [0 =5 '@+ /")

Example 2. If a function f is derivable at a point ¢, show that | f | is also
derivable at ¢, provided f(c) # 0. What can you say if f(c) = 0 ¢ Juslify.

Sol. As the function fis derivable at the point ¢, f is continuous at point c.
Case (1). f(c) # 0 :
If f(c) > 0, then there exists §, > 0 such that
flx)>0forallxe (c—5,,c+3)
If f(c) <0, then there exists 3, > 0 such that
flx) <Oforallxe (c -5, c+3,)
Thus we have
ftx) >0forallxe (c—38,, c+39,)

and flx) <Oforallxe (c -8, c+3,)
| fx)ifxe(c—081,c+6;
= [ 1= {—f(x)ifxe(c—Sz,c+62)

Since f1is derivable at the point ¢
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Calculus—II o | f 1 1s also derivable at the point ¢
The result is not true if f(c) = 0. For example,
Consider f(x) =xfor allx € R

NOTES . f0O)=0 and | flx) | =1 x|
Here fis derivable at x = 0 but | f | is not derivable at x = 0.

HIGHER ORDER DERIVATIVES

We know that the existence of the derivative f’ of a function f at a point ¢
implies the existence and continuity of the function in a neighbourhood of ¢. The
derivative of the function f” at c, if exists, is called the second derivative of f at ¢ and is
denoted by f”(c). The existence of f”(c) implies the existence and continuity of /" in a
neighbourhood of ¢. Similar is the case for higher order derivatives. The nth derivative
of f at ¢ is denoted by f"(c).

Taylor’s Theorem®. If a function f defined on [a, a +h] is such thal
@) the (n — Dth derivative ! is continuous on [a, a + h] and

(1) the nth derivative ™ exists on (a, a + h), then there exists a real number 0,
0 <0< 1, such that

h2 3
fla+h)=fl@)+hf'(a)+ 57 f @+ 57 [“(a)+ ...
hn—l hn (1 _ e)n—p

+ [™(a +0h) ...(1)

n—1 a) +
w-n1 "
where p is a given posilive inleger.
Proof. Since f*! exists, all the derivatives f’, f”, ..., f*! exist and
continuous on [a, a + h]. Consider a function ¢ defined on [a, a + h] such that

(a+h-x)?*
0@ =fw) +@+h-—0f @+ 5 ["@+..

(@+h-x)"
———— ")+ Ala+ h—x)?

(n-1)!
..(2)
where A is a constant to be determined such that
o(a + h) = o(a)
But, ¢(a+ h)=fla+h)
h2 n-1
and o@) =fla)+h['(a)+ o1 f7(@)+ ... + oD [ a) + Ah?
h2 hn—l
_ ’ - ” - n—1
fla+ h) = fla) + hf'(a) + Y (@ + ... + 1! )+ AP ...(3)
@ Now, f,f'.f", ... , /7! being all continuous on [a, a + h], the function ¢ is

continuous on [a, a + h] ;

*After the name of an English Mathematician Brook Taylor (1685—1731).
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(@@1) the functions f, f, ....., f* ! and (a + h — x)" for all r, being all derivable on (a,
a + h), the function ¢ is derivable on (a, a + h) ; and

@) ¢ (a+ h) = ¢(a).
Thus, the function ¢ satisfies all the conditions of Rolle’s theorem and hence 3
at least one real number 0, 0 <0 < 1, such that

0’(a + 6h) = 0.
But, from (2),  ¢'(x) =/'(®) + [ f'@) + (@+ h—x) ["(x)]

e
+ m [— m—-1(a+ h— x)n—2 f”’l(x)
Fa+h—xr @] - Apla+h— !

(ath-x)""!

= o [T@-Ap@th-xp!

(Other terms cancel in pairs)

n-1 _pny-1
0 = d(a + 6h) = % f™(a+ 6h) — Aph?1 (1 —0w!
RTP(1-0)t7P
= AZWf”((I+9’L),’L¢O,9¢1

Substituting A from (3) in (2), we get the required result.

Another form of Taylor’s Theorem
If a function f defined on [a, b] is such that
@) the (n — 1th dertvative of f "' is continuous on [a, b] and
(1) the nth derivative of f " exists on (a, b)

then there exists a number ¢, a <c¢ <b, such that

1
fb) =fla) +(b-a)f (@) + 57 (b—a)[Ta) +....
1 n- n- 1 n n
t= b T @ =) ),

[For proof, apply Rolle’s theorem to the function

1
0() = f(b) = flx) = (b —x) f'(x) = 57 (b —)* [ "(x) — ......

.
(n-1!
where A is a constant such that ¢(a) = ¢(b)]

(b _ x)n—l f(n—l) (x) —%(b _ x)nA

Forms of Remainder after n terms :
AT (1-0)""P
p((n -1
which occurs after n terms, is called the Taylor’s remainder after n terms. The theorem

with this form of remainder is called Taylor's theorem with Schlomilch and Roche
form of remainder.

(@) the term R = [™(a + 6h),
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Calculus—II

N For = 1 Copohaze
@) For p =1, we get T D1 " (a 1)
and is called Cauchy’s form of remainder.
NOTES h"

n

(ii1) For p = n, we get R = T /™ (a + 0h)
and is called Lagrange’s form of remainder.

Second form of Taylor’s Theorem. Replacing a + h by x (or h by x — a) in (1),
we get

x—a)? (x —a)"?

(
f@) =fla) + @=—a) f@+ =5 f@+...+ oDl ")
(x —a)"
) 1-0)"?f"a+0(x—-a)

p((n-1)!
where 0 <06 <1 ..(4)
The remainder after n terms can be written as

(x-a)"A-0)""7?
pl(n -1

Maclaurin’s Theorem. Putting a = 0 in (4), we have for x € (0, h),

R, = f7c), a<c<x.

2 xn—l xn (1 _ e)n—p

x
— ’ PR N n—1 -  fn
f0) = fO) +x /O + 7 [7O) + ot Ty [0+ e [0
and is called Maclaurin’s theorem with Schlomilch and Roche form of remainder.

xn(l _ e)n—l . .
n = W /™(0x) and is Cauchy’s form of remainder.

Forp=1R

n

x . .
Forp=n,R = T f™(0x) and is Lagrange’s form of remainder.

Some More Results Concerning Taylor’s Theorem

(@) If a function f defined on [a, b] satisfies all the conditions of Taylor’s theorem
then

1
fla)=f(b) +(a@=b) ['(0) + 57 (@=b)* ["(b) +.....

_ 1 o) g L o
iy (@=b)"' fO V) + 7 (@-b)" " (c), a<c<b.

[Hint. Apply Lagrange’s mean value theorem to the function
1
F) =fla) - f(x) — (@ —x) ['(x) - 21 (@—x)? f"(x) —......

1
(n-1!
where A is a constant such that F(a) = F(b).]

@) If a function [ satisfies all the conditions of Taylor’s theorem on [a — h, a,
h >0, then

1
(@@= [TV (@) - 7 (@-0)" A

fla—h)=fla) hf'(a)+ % he fra@) + ...

(_ 1)”‘1 n—1 (n—1) (_ 1)
+(n—1).’ L (@) + n!

n
h"f™ (@—6h), 0<0<1
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[Proof. Let ¢ = a — h, so that ¢ < a and [ satisfies the conditions of Taylor’s
theorem on [¢, a]. Therefore, expressing f(c) in terms of values at the upper end, of
f and its derivatives,

1
fley=f(a) + (c—a) f'(a)+ 21 c—a)f" )+ ...

1 1
+ c—a)yt frV@+ = Cc—a)"f" (), c<d<a.
(n=-1)! n!
(D)
Since ¢ =a—h, h > 0, therefore c —a=—-h.
Also,c<d<a & a-h<d<a & -h<d-a<0
o 0< 9= 2
d-a
Put =0sothat 0<0<1andd=a-0h.

Using values of ¢ and d in (1), we get
1
fla—h) = f(a) — hf’(a) + 21 hf"(a)+ ...

(-t -
)/ n-1 £(n-1) D) +
opt M@
@ir) If a function f satisfies the conditions of Taylor’s theorem on [a — h, a], h >0
and x € [a—h, a] then

+

™ (@—0h), 0<0<1]

1
f)=fa)+(x~a)[" @+ 57 (x- a)?f"(a)+.....

r L e @ L - a O @+ (-a) 0<0<L]
n-1)! n!

[Proof. Let x € [a — h, a] so that [x, a] C [a — h, a] and [ satisfies the conditions
of Taylor’s theorem on [x, a].

Now, keeping x fixed, and using Taylor’s theorem to express the value of f at the
lower end x of [x, a], in terms of the values of f and its derivatives at the upper end a,
we have

1
fv) = fla) + (x—a) f(@) + 57 @—a)* ["(@) + ...
1 1
T o @@ (@) + = @-—a)"f™(@+6—a), 0<6<1]

@v) If a function [ satisfies all the conditions of Taylor’s theorem on [a — h, a +
hjand x € [a —h, a +h], then

1
fx)=fla)+(x-a)f la)+ 27 (x-a)Pfa)+....
1
+
(n-1!
[Proof. Since f satisfies all the conditions of Taylor's theorem on [a —h, a + h],
h >0 and hence on [a — h, a] and [a, a + h] also.

(x—a)y ! [OD (q) +% )™ fa+0(_a)0<0<1,

Now,x€ [a—h,a+h]iff xe [a—h,alorx€ [a, a+h]
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Calculus—II In either case, we have
1

D1 x—a)"t fD (a)

1 ,
f@)=flay+x—-a) f'@+ 271 @—a)?f(@)+...+
NOTES +%(x—a)"f('“[a+6(x—a)],0<6<1]

(v) Maclaurin’s theorem. If a function f defined on [~ h, h], h > 0 such that
@) £ is continuous on [~ h, h] and
@) f™ is derivable on (- h, h), then for x € [~ h, h], there exist 6, 0 < 6 < 1 such that

f(x) = f(0) +x [/(0) + % SO0+

1
S —
m-1!
[Proof. Put a = 6 in the above result.]

1
1 f =D () + — X" f ™ (0 x).

Taylor’s and Maclaurin’s infinite series

Let a function fpossess continuous derivatives of every order in [a, a + h], then
for all n € N, we have by Taylor’s theorem

2
fla+h)=fla)+hf'(a)+ % f7(@) + ...

hn—l B hn
+ fr @+ — f" (@+6h), 0<6<1).
(n-1! n!
= Sn + Rn
hZ hn—l
where S =fl@)+hf'(@+— f"(@)+ ... + £V (a)
" 21 (n-1!
hn
and R =— f™ (a+ 6h).
" n!
Now,if R, - 0asn — o, then S — fla + h)
hZ hn—l
= the infinite series f(a) + h f’(a) + o7 @)+ ... + Y D) + ...

converges to f(a + h).
Thus, if
() f possesses continuous derivatives of every order in [a, a + h]

and (@1) R, = 0 asn — oo, then
n

2
fla+h)=fa)+hf' )+ % 7@+ ... + h—‘ [ (@) + ...
! n!
The infinite series on R.H.S. is called Taylor’s series.
If we put a = 0 and replace h by x, then we get
’ xz ’” xn
f(x) = f0) + x f/(0) + o7 170+ ... + T f0O) + ...
The infinite series on R.H.S. is called Maclaurin’s series.

Here R can be of any form.
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Example 1. If fis derivable for each x € Rand | f(x) | <A, | ["(x) | <B, A, B
being constants, prove that | f’(x) | <2JAB.

Sol. Applying Taylor’s theorem with Lagrange’s form of remainder after 2
terms to fin [x, x + h], we have
2
flx+h)y=fx)+hf’'(x)+ % f7(x+06h),0<0<1.

2

R BT =1 fet )~ @)~ ey 7 e+ 0l |

<l fix+h) |+ fx) |+ % h? | f”(x+6h) |

= |f(x)|<—{A+A+ hz} %hB
| /7 (x) | 1s independent of h and less than
%Jré Bfor allh>0 ..
| f'(x) | 1s less than the least value of —A + h—B

fZA /Bh
Let gCth) = ( ]

Minimum value of g(h) is 2+/AB .
From (1), | f'(x) | <2+/AB.

Example 2. Show that the number 0, which occurs in Taylor’s formula for f at a

with Lagrange’s form of remainder after n terms, approaches the limit as

n+

x — a provided f ™V is continuous at a and f ™V (a) # 0.

Sol. Since f "*Vis continuous at a, there exists 8 > 0 such that f "*D (x) exists on
(@—3, a+3). With h <38, f ™D (x) exists on [a — h, a + h] and hence on [a, a + h] also.
Therefore, /7 (x) and all lower order derivatives are continuous and derivable on
[a, a +h].

by Taylor's formula for f at a with Lagrange’s form of remainder after n

terms, we have

1
fla+h)=fa)+hf'(a)+ Y] h f7(@) + ...

1
+ 11 1l oD (@) + . hf™ (@+06h),0<0<1. ..(1)

This defines 0 in terms of h.

Again, applying Taylor’s formula for f at a, with Lagrange’s form of remainder
after n + 1 terms, we have

fla+h)=fla)+hf(a)+ % h2f"(@) + ......

1
] h* f™ (a) + hvtfe*) (@+6,h),0<6<1 .2

(n+1)!
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Calculus—I1 .. from (1) and (2), we get

1 AP n+l
T h* f (a+ 6h) = o ™ (a) + i o (@ + 6, h).
NOTES
= [™ @+ 0h)—f™ (@)= _——= [V (@+6,h) (- h>0)..3)

Since f ™ is continuous and differentiable on [a, a + 0h], 0 <0 < 1, we have by
Lagrange’s Mean Value Theorem,

Ohf*D (a+006,h)= o fD (@+ 6, h)
n+1

Cancelling h, we have

1 f(n+1) (a +91 h)
n+1 f(n+1) (a+662 h)

1
= lim 6 = —— , provided f ™™V (x) is continuous at a and f ®*V (a) # 0.
h—0 n+1l

Example 3. Using Taylor’s theorem, prove that

x? x?
x - — <log (1 +x)<x——2 ,x>0.
2 2(1 +x)
Sol. Let flx) =log (1 +x),x>0.
Let a > 0 so that [0, a] < [0, ).
The function fis continuous and derivable on [0, a] and /' (x) = 1oz’ xe [0, a]
X
and f’(0) = 1.
The function f” is again derivable on [0, a] and f"(x) = — m

by Taylor’s theorem for fon [0, x] C [0, a], with Lagrange’s form of remainder
after 2 terms, we get

2
X

flx) =f0) +x f7(0) + 21 f”©®x)

2 2
x 1 x
= loe(l1+x)=0+x—— . ——— =x————— ,0<0<1.
g1+ 2 " (1+0x)> 2(1+0x)>
"~ = 22 log (1 +9) -]
= ——=— |lo X)—x
(1+6x)2 x? &
Since ‘a’ is arbitrary, it is true for all x > 0.
Also,0<0<landx>0 = 1<1+0x<l1+x
1 1 1
< 1 < 1 and hence 5 < 7 <1
1+x 1+0x 1+x) (1+6x)
1

-2
(1+x)2 <x_2 [10g(1+x)_x]<1
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2 2 Aalgebra of Differential

= ——>log(1+x)—x>— — Functions
sarn)?  osdrY 2
X2 2
= x——<log(l+x)<x————— ,x>0.
g <log(ryy<x-or > NOTES

Example 4. If [ is continuous on [a, b] and possesses finite first and second
order dertvatives for x =x,, where a <x, <b, prove that

woiy— 3o fxg +h) =2fxy) + flx) —h)
[y = ]llliz%) B2 '
Sol. Since f’(x)) and f” (x) exist, they also exist in the neighbourhood
(x,—h, x,+ h), h>0. Hence, applying Taylor’s theorem for the intervals [x,, x, + h] and
[x, — h, x,], we get

2
flxy+ h)=flx)) +hf'(x)+ 91 “(x,+0,h),0<0, <1

B2
and flxy—h) = f(x,)) —hf"(x,) + 91 “(x,—06,h),0<6,<1
Adding, we get

h2
flxy + h) + flx,—h) = 2f(x,) + 91 " (x,+ 0, h)+ [ (x,— 0, h)]

+h)-2 + -h 1, .
= Pt Ao ) = S Uyt 0,1+ [ (5,6, )
. flxg +h)—2f(xy) +f(xyg —h) .,
i e =),
Example 5. Show that if
—I<x<], (1+x)1/3=1+£xféx2+%x37%x4+ﬁ’,5

880

5
where R, = % (1-0)* ( 543

) (1+6x) 1475,

Deduce the value of 9'/9 to four decimal places and estimate the error involved.
Sol. )=+ —1<x<1 (D
Taylor’'s expansion of f at x = 0 with Cauchy’s form of remainder is

2 3 4

flx) = f0) +x f7(0) + % ”(0) + % ”(0) + % iv (0)

5

F e -0 /1 00, 0<0<1 @)
Now, flx)=(1+x)" fo=1
=3 1+ Fo=3
r@=3 (‘7] (1+ ) o=
@ =5 (‘72] [_75) 1+ 0= 5
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: 1(-2)(-5) (=8 = - 80
o3 ()R et o
1 (— ~5) (-8)(—
o ot ()R R
880 - 14

a3 (1+x) 3 (3
Therefore, from (2), we get

1 2
By = e 2
(149 =1+ 223

Keeping first five terms only, we get

1 1 5 10
+0)B =1+ - x— = a2+ — - —— 1t
1+x 1 g ¥t g Y g X (4
Now, 9 =@+ =21+ 1251

Putting x = .125 in (4), we get

1 1 s 5 5 10 .
13— 9 |1+=(125) - = (125)% + = (125)3 — — (125
9 2[ 3( ) 9( ) 81( ) 243( )]

=2 [1 +.04166 — 1 (.01562) + 5 (.00195) - 10 (.00024)}
9 81 243

~ 2.08008
Error involved = | R, |
5 Y -14/3
_ x°(1-0)* (880 1+9
4! 243 8
<(125)5i>< 880 x 1 ( x=.125)
- 4! | 243 T

110
= (.125)° x 799 <.00001.

Note. In the above example, we had x =.125 > 0 and there was no difficulty in estimating
the error. We could use Lagrange’s form of remainder also. But, since X, conlains negalive powers
of (1 + 0 x) and therefore it will create some difficulty when x < 0.

In such cases, Cauchy’s form of remainder is really useful.

Example 6. Using Maclaurin’s theorem, find the expansion of cos x, x € R aboutl
x=0.

Sol. Let f(x) =cosx, xe R
f(x) is continuous as well as derivable on R.

and f’(x) = —sin x = cos (x+gJ,xe R, f7(0)=0.

mmn
Clearly, [ (x) = cos (x + 7) ,xe R,m=1,2, 3,

= [ (O)=cosm77t :
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Now, for any real number A > 0, [- A, A] ¢ R. Thus, for any positive integer n,

£ @D (x) is continuous and derivable for all x € [- A, A],

1
f@)= ) + 5/ /(O + 57 ¥ f7(0) +

1
(n-1)!
=S, @+ R, (x),

+

1 x"
where R (v)=— x" " (6x) = — cos (ex + ﬂ)
" n! n! 2

Sol. Let fxy=log (1 +x),x>-1
1
Clearly, f(x) is continuous and derivable for all x > — 1 and f "(x) = Tox
x

x>—1 (D)

Also, for each positive integer n, /™ (x) exists.

" (-1 (n -1
f (X')— (1+x)n ;x>_1

and FOO =11 =1 o)

x [t 7 A"
= |Rn(x)|=| l‘ cos(9x+ n_) < —
n! 2 n!
A" a A
Let a, = = 2 - =
" nl a, n+1 noe  q
the sequence < a, >1is convergent and a, — 0 as n —
n
lim | R (x) | £ lim =0
fent n nse N
= lim R (x) =0, xe [-A Al
n—oo

Since A > 0 is arbitrary, the expansion of cos x is valid for all x € R, and

2 3
=1+x®%F%TGJ)+§T(®+ ...... +

n
When n = 2k + 1, then cos (n — 1) 5 = cos kn=( 1k

2 4 2k
X X
fo=1-57+

4!

Example 7. Find the expansion of log (1 +x), — 1 <

Clearly, f @ (x) is continuous and derivable for all x > — 1.
Let a, b € Rsuch that — 1 <a <0andb >0 then, [a, b] C [~ 1, )

Now, /™D (x) is continuous and derivable on [a, b].

1
1 f D () + m X fM@Ox), 0<0<1

(n-1)!

X
(n-1)! 2

Functions

NOTES

(.- lxl<A

lim %1 — <

n

xn—l ll‘(n—l) (O) +

n-1 B
cosm—1) — + ...

x <1 about x =0.
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Calculus—II Also, [0, b] C |a, b].

by Maclaurin’s theorem for fon [0, b] with Lagrange’s form of remainder
after n terms and x € [0, b].

2

NOTES ) = f(0) + x £7(0) + % [70)+ ......

1
+ —(n 1 -1 f‘(n—l) (O) + m A" f(n) (6%’), 0<0<1

=S, () + R, (x) ..(3)
-1
2w e [ EDT (=D
where R, 1=\ 257 (ex)|_ n! (1+6x)"

bn n 1

<—nm-1!=— v x>0,0>0, <1
n! n! 1+6x
n

Let anzb— = a”—“zi%basn—wx

n a n+l

n
<a, >1is convergent if b < 1.

n
Whenb <1, lim |R (x) | < lim b— =0 = lim R (v)=0.
n—o n—e n n—o
Hence, expansion of log (1 + x) is valid for all x, 0 <x < 1. .4
Again, since [a, 0] C [a, b].

by Maclaurin’s theorem for f on [a, 0], with Cauchy’s form of remainder
after n terms and with x € [a, 0]

1
f(x) =f(0) +xf’(0) + 2 x2f70) + ...
xn (1 _ e)n—l
o ¥ (n—-1!
=S,(x) + R, (x) ..(5)

L f (D () + f™ (0x),0<0<1

2" (1-0)"" P Ox) | |x"A-0)" D"

h R (x| = ..(6
where | R (x) | T 1+ 02" (6)
Now,a<x<0 = |1+0x|>]|1—-|6x|]l>2]1-0lx||>]1-06|

(v lxl<lal<l
laP A-0r" _ Jaf
| R (x) | < = —0asn—o v~ lal<1
» a1-oy (1-6) ( <D
= lim R (x)=0.
expansion of log (1 + x) is valid for all x, -1 <x <0 (D

Hence from (4) and (7), we see that the expansion of log (1 + x) about x = 0
is valid for all x € (- 1, 1) and we have

1 1
f(x) = f(0) + x f’(0) + B x2f70) + ... T moD! ey AR (0) IS
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1 1
=O+x‘1+2—!x2.(—1).1!+§x3‘(—l)2.2!

+ + L D2 . (n—-2 !+
...... -1 .(n P+
2 3 n-2
B x° x G2 -
—x——+3 ...... -1 AL SR ,—1<x<1
EXERCISE 3

Prove Taylor’s theorem with Lagrange’s form of remainder by considering the function
(@a+h-x)"

(n-1)! i) + Ala+ h -

o lath-x)
W=+ @+h-xfW+ 5 ["@+..+
x)"on [a, a+ h].
Prove Taylor’s theorem with Cauchy’s form of remainder by considering the function

(@+h-x)? (@+h-x)?
VW =fW+@+h-0f O+ 5 [T+ .. Tl frl@+Ala+h

—x) on [a, a+ h].
Applying Lagrange’s Mean Value Theorem to the function
(@a+h-x) (a+h-x)""
0@ =f)+@+h-x) [ )+ 7 [+ ... oy f 1) + AhPon
[a, a + h] to prove Taylor's theorem with Cauchy form of remainder.

Remark. For n = 1, the theorem reduces to the Mean Value Theorem. For this reason,
Taylor’s theorem is also called the Generalized Mean Value Theorem.

State and prove Taylor’s theorem.

If flx+ h) = f() + hf ' (x) + % h%f” (x+ 0h) and f(x) = x%, show that 6 = 1 .

3
Show that if @ >0, h> 0 and n € N, then there exists 6, 0 <0 < 1 such that
1 2 _qyn-1 zn-1 1y ozn
7:l—£+h7— ...... +M+R, where R :th.
at+th a o> o° a” " " (a+6h)"

[Hint. Apply Taylor's theorem with Lagrange’s form of remainder to f(x) = % , on
[a, @ + h] at x = a.]

Find

(1) expansion of e* (1) expansion of sin x.

If a function fis such that its derivative f’1is continuous on [a, b] and differentiable on (a,
b) then show that there exists a number ¢ between @ and b such that

1
fo)=fay+b-a)f' @+ 35 (b~ a)* "(c)

[Hint. Consider the function
0@ =flx)+ (b-x) ')+ (b-9>A
where A is a constant to be determined such that
o(a) = 0(b). Apply Rolle’s theorem to ¢(x)]
If a function is twice differentiable on [a, @ + h], then show that

2
fla+ W =fia)+ hf @)+ "o ["a+oh), 0<0<1
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Calculus—II [Hint. Consider the function
0(@) =f) + (@+ h—x) ') + (@a+ h—x)*A.
where A is a constant to be determined such that ¢(a) = ¢(b). Apply Rolle’s theorem to

0]
NOTES
Answers
) 2,3 X1
7. ) e=1+x+a+a+ ...... +(n—1)'+ .... ,xeR
) . P R (—pk-1 N
) sinx=x— gy + Fy— .. (2k_1)!x2 + . xe R
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2. GENERAL THEOREMS

Introduction
Taylor's Theorem with Lagrange’s Form of Remainder After n Terms

Taylor's Theorem with Cauchy’s Form of Remainder

INTRODUCTION

In the present chapter, we shall consider a few general theorems which play a very
important role in the subsequent development of the subject matter of Differential
Calculus.

TAYLOR’S THEOREM WITH LAGRANGE’S FORM OF
REMAINDER AFTER n TERMS

If a function f(x) be such that

@) f), [, [ ... f7~ 1 (x) are continuous in the closed interval [a, a + h]
and

(1) f ™(x) exists in the open interval (a, a + h), then there exists at least one
number 6 between 0 and 1 such that

2 n-1 n
f(a+h)=f(a)+hf'(a)+Z—!f” (@+ ... + oD f”*l(a)+%f”(a+6h)
Proof. Consider the function
2
F(x)Zf(x)+(a+h—x)f’(x)+%/‘”(x)wL ““““
(@+h-x)""1 . | (a+h-x" 1
+Wf (x)+—n! A (D

General Theorems

NOTES
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Calculus—I1 where A is a constant to be so chosen that
F(a + h) = F(a).
Putx=a+hin (1),
NOTES F(a+ h) =fla + h) (All other terms becomes zero)
Putx=ain (1),

hZ hn—l
F(a) = fla) + hf (a)+2—!f (@+ ..+ oD

Putting these values of F(a + h) and F(a) in F(a + h) = F(a), we have

@+ A
n!

n-1

n-1n!

h? h"
f(a+h)=f(a)+hf’(a)+E/‘”(a)Jr ...... + f”*l(a)+HA (2

which gives the value of A.
Now let us apply Rolle’s Theorem on F(x) in [a, a + h]

It 1is given that f(x), f'(x), f "), ...... /"~ 1(x) are continuous in the closed
interval [a, a + h] and their derivatives [’ (x), f "(x), ...... f "(x) all exist in the open
interval (a, a + h).

a2 o\

@+ ;l' %) yeeees (@th ' %) being polynomials and A are all

! n!
continuous in the closed interval [a, a + h] and derivable in open interval
(a, a+ h). Therefore, F(x) is continuous in the closed interval [a, a + h] and derivable in
open interval (a, a + h).

Also F(a + h) = F(a).

Thus, F(x) satisfies all the three conditions of Rolle’s theorem, and therefore,
there must exist at least one positive number 0 less than 1 such that

F'a+06h)=0[0<0<1] ..(3)
Differentiating both sides of (1) w.r.t. x ;

1
F@=fw+[a+rh-x)f"x)-f"@®]+ Yl [(@+h—x)?f" (x)—2a+h-x) f"®)]

Also (a + h — x),

...... +rll)! [@+h—x)""1fr@-n-1(@+h-x)"2f"1(x)]
nA .
— 1 (a+h—-x)

A
+h—x)" 1 frx)———— (@+h-x"!

(n-=-1!

1
or F (x)= W (a

[ other terms cancel in pairs]

_(@+h-2""!

D! [f " (x) — Al
Putting x = a + 6h,
n-1
F (a+6h)=M [f "(@+6h)—A]=0 [By (3)]
(n-1!
: R 1 .
re., m (1—6) [f (a+6h)—A]=O
f™a+06h)=A [ mneitherh=0nor (1-0)=0as0<06<1]

36 Self-Instructional Material



Putting this value of A in (2), we have

hn—l
(n-D!

2 n
f(a+h)=f(a)+hf’(a)+%f"(a)+ ...... + f”*l(a)+%f”(a+6h) [0<6<1]

n

Note. The (n + 1)th term L’ [™(a + 6h) in the above expansion is in general, denoted by
n!

R, and is called Lagrange’s remainder after n terms.

Cor. If we put n=11n the above theorem, it takes the form
fla+ h)=f(a) + hf’ (a+ 6h) where 0<0<1

which is Lagrange’s mean value theorem and hence this shows that mean-value theorem
1s a particular case of Taylor’s theorem.

Alternative form of Taylor’s theorem with Lagrange’s form of remainder
after n terms

If we put a + h = b, then interval [a, a + h] becomes [a, b] and a + 0h =
a+ (b—a)d=c, where clies between a and b, and theorem becomes
= a)2 G-t ®- a)”

f @+ ... +wf'L1()+ ! f7(c)

fb) = fla) + (b—a) f(a) +

[a <c<b]
Cor. Maclaurin’s theorem with Lagrange’s form of remainder after
n terms.
Proof. Firstly, state and prove Taylor’s Theorem with Lagrange’s form of Remainder as
in Art. 2. Then put a =0 and h = x.

Hence we get

2 n-1 n
£(x) = £(0) + X7 (0) + o= £ (0) + oo+ ——— £7-1 (0) .o + X £7 (Ox) [0<0<1]
21 m-1! n!

which is called Maclaurin’s theorem with Lagrange’s form of remainder and
holds good when

@) [x), '), ["®) ... f"~1(x) are continuous in the closed interval [0, x]

and (i) f "(x) exists in the open interval (0, x).

TAYLOR’S THEOREM WITH CAUCHY’S FORM OF
REMAINDER

If a function f(x) be such that
@ fx), f ), ") ... "1 (x) are continuous in the closed interval [a, a + h].

@) [ (x) exists in the open interval (a, a + h) ; then there exists at least one
number 0, between 0 and 1, such that

h2 hn—l .
fla+hy=f@ +hf @+ G [ @+t e [ (@
hn
+
(n-1)!

(1—0)" 1 fra+0h) [0<0<I]

General Theorems
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Calculus—II (a+h- x)z

Proof. LetF(x)=f(x)+(a+h—-x)f" (x)+ Y 7 (x)

n—1
o +Mf”*1(x)+(a+h—x)A (D

NOTES n-1n!
where A is a constant such that F(a) = F(a + h).

Putting x =a in (1),
hZ hn -1
F(a) = f(a) + hf (a)+2—!f (@ + ... + D!
Putting x=a +h in (1),
Fa+hy=fla+h)+0+0+ ... =fla + h) ..(3)
But F(a + h) = F(a) (assumption)
Putting values from (3) and (2),

" Ya@+hA ...(2

’ h2 3 hn—l
fla+ hy=f@)+hf* @+ Sy [7 @+ oo+ gy

Now Let us apply Rolle’s Theorem on F(x) in [a, a + h].

[ 1(a)+ hA (D

(1) F(x) is continuous in the closed interval [a, a + h].
[ f), '@, ") ..., f" 1(x) are continuous in the closed interval
[a, a + h] (given)
Also (a+h—x), (@a+h—-x)%...... (a+ h—x)""!being polynomials in x are
continuous in [a, a + h]
(1) Similarly, F(x) is derivable in the open interval (a, a + h)
@1t1) Also, F(a) =F(a + h) [Assumption]

By Rolle’s Theorem, there exists at least one real number 6(0 <6 < 1)
such that F’(a + 6h) = 0.

Differentiating both sides of (1) w.r.t. x,
1
F=f®+[a+h-xf"@-f"®]+ 21 [(@+h—x)2f"@)—2a+h-x)f W] ..

b @t h-9 @ - D+ h- @] - A
n-1!
A SN <. ) d e
[. dx(uv) udx(v)+dx.vanddx(a+h x) 1}
’ . 1 n— n
or F(x)_(n—l)! (@+h—x)"1f"(x) — A
Put x=a+ 0h,
F'(a + 6h) = _ 1 (@+h—a—-0h)""1f™a+06h)—-A
n-1!
— 1 n-1f£n _
_(n—l)!(h_eh) f™(a+ 6h) — A
hn—l .
_—(n—l)! (1 —-0)"=f"(a+ 06h) - A.
But F@+6h)=0
hn—l
_p\yn—1fn _ —
(n—l)!(l 0" f"(@+06h)—A=0
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B 1 General Theorems

or A=—— (1-0)""fn(a+ 6h)
(n-1n!
Putting this value of A in (4),
2 n-1
fa+ b= fi@) + @+ o @+ o I @ NOTES
+h n (1—-6)""'f"(a+ 6h)
(n-D!
or f(0+h)=f(a)+hf’(a)+h_zf”( ) + " p! £71(a)
' ¢ 4 oY a) t ... D! .
+ h—n ¢! —9)"*1f"(a,+ Qh)
(n-1n!

Note. F(x) of Art. 3 has been written from

n
F(x) of Art. 2 replacing last term M Aby (a+h—-x) A
n.:

Cor. Maclaurin’s theorem with Cauchy’s form of remainder after n
terms.

Put a=0and h=xin Art. 3. (Taylor’s theorem with Cauchy form of remainder,
then we get

n-1 n n-1
x W1 x"(1-0) N
(n—l)!f O+ (n-1! /16
[0<6<T1]

which is called Maclaurin’s theorem with Cauchy’s form of remainder and holds
good when

@) f), '), [ ... 7~ 1(x) are all continuous in the closed interval [0, x]

and @) f(x) exists in the open interval (0, x).

2
f) = f(0) + xf* (0) + % [7O) + oo+

xn(l_e)n—l
(n-1!

after n terms in Maclaurin’s development of f(x).

Note. The (n + 1)th term " (0x) [0<06<1] is known as Cauchy remainder

Example 1. Expand a* by Maclaurin’s theorem with Lagrange’s form of
remainder after n terms.

Sol. Here f(x)=a"
By successive differentiation, we get

['(x)=a*. loga, ["(x) =a*. (og a)?, ...... ) =a*. (log @)t
and f(x) =a*. (log a)*
Putting x = 0, we have
f(0)=1,f(0) =log a, f” (0) = dog a)?, ...... £~ 10) = dog a)" 1

[ aO — 1]
and [ ™(0x) = a® (log a)”
But by Maclaurin’s theorem with Lagrange’s form of remainder, we have
2 n-1 n
’ X ” n— X n
f@) = f0) +x . f/O) + o [O) + oo+ e [ 1 (0) + = [ 7(0)
2! n-1n! n!

[0<6<T1]
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and we know that (%) = (a2 + b?)"2 e** gin (bx +ntan! 2)

1.

Substituting the values in the above result, we get

2 n-1
X X
*=1+x.logca+=— (loga)?+ ... +
a x . log a 2!(oga) D!

n
(log a)"~ 1 + x_' a® . (og a)™
n!

n
Here Lagrange’s remainder after n terms = x_' a® . (log a)*, where 0 <0 < 1.
n!

Cor. Putting a = e, the expansion of e* is

x™ x"

ErETRETESL R

Example 2. Expand e® sin bx by Maclaurin’s Theorem with Lagrange’s form

of remainder after n terms.

Sol. Let f(x) = e® sin bx
: f/(x) =e*™cos bx . b+ sin bx . e . a=e™ (b cos bx + a sin bx)
7 (x) =e™ (—b?sin bx+ ab cos bx) + (b cos bx + a sin bx) e™ . a
= e® [- b2 sin bx + ab cos bx + ab cos bx + a? sin bx]
[7(x) = e™ [(a? — b?) sin bx + 2ab cos bx]
7 (x) = e* [(a? — b?) cos bx . b — 2ab? sin bx]
+ [(@® — b?) sin bx + 2ab cos bx] e* . a

a
Putting x = 0 in f(x), f'(x), f “(x), f”(x) and changing x to Ox in f "(x)

we have f(0)=0, f(0) =0, f”(0) =2ab,

£7(0) = (a@® — b?) b + (2ab)a = a?b — b® + 2a2b = 3a? b — b® = b(3a? — b?)

£ (0x) = (a® + b%)"2 9~ gin (bﬁx +ntan”! 2)
a

Putting these values in Maclaurin’s theorem,

2 3 n
0= ) + 5O + 5 170) + 5 [7(0) % oo+ 2oy (60,

2
x3

we have e™ sin bx = bx + % (2ab) + 37 b(Ba?2-b% + ...

x" - 1 b
...... T (@2 + b2)"2 e2% gin | bOx + ntan™ " — |.
! a

EXERCISE 1

(a) State and prove Taylor’'s theorem with Lagrange’s form of remainder after n terms.

(b) State and prove Taylor’'s development of a function with Cauchy’s form of remainder
and hence deduce the Maclaurin’s expansion.

(¢) State and prove Maclaurin’s theorem (As special case of Taylor’s theorem).
(d) State and prove Maclaurin’s theorem with Lagrange’s form of remainder.
[Hint. Cor. Art. 2.]



Show that

2 3 n-1 xn
Ylog(l+m=x-+% _ +cpr2zi st —2— )
() log (1 +29= x ~ -+ % CoE ey

D"t -Dla”®
(ax +b)"
2 3 n-1 n
.. x° x x x
1) 1 l-x)=—x— "——-"——....— -
(1) log ( ) 2 3 n-1 nl—ox)
x2 x8
Show that e® cos bx =1+ ax + (a? — b?) f+fa(a2 3b2) + ...

21 31

X o2 b 1 b
+ﬁ(a + b%)"2 e cos | bOx +n tan™ " —
! a

[Hint. (ZC—'; (e™ cosbx) =(a® +b2)"? e™ cos [bx +ntan! Zj}
Show that for every value of x,
3 .5 2n-1 2n
(i) sin x = x — %JF’L' T A DU i T ED Gy S 09,

[Hint.a;IZ sin (ax +b) =a” sin [ax +b+ 2) Also sin (nm+ 0) = (— 1) sin 9]
x™
e on n+1
» —q_x . x SN oyl 2
(i) cosx=1 !+ Pl + (1 @) +(-1) (2n+1)!sm (6x)
[Hint. (Zc cos (ax +b)=a’" cos [ax +b+ H and cos (nw + 0) = (— 1)" cos e}
1 1
Show that sin x + cos x—1+x—2— ——' 3+Ex (sin Ox + cos 0x).
h h? A"
Show that log (x+ h) =logx+ ——— + ... + =D —
B = log et o R PN

[Hint. Use Taylor’'s Theorem with Lagrange’s form of Remainder.]

Expand e® sin px by Maclaurin’s Theorem with Cauchy’s form of remainder after n
terms.

n n b
— e™sin bx = (@® +b%)2 ™ gin (bx +n tan~! —)
a

{ Hint.

dx
Expand b* cos ax by Maclaurin’s Theorem with Lagrange’s form of remainder after r
terms.

[Hint. b* = ¢l8 b (o elogf) = f)) =e*log b - brcos ax = e logb cos ax.]
Answers
2 3
pxX+ — (2ap) T Ba?—pH+ ...
n-1
b AZO7 7 o (@® + pH™2 sin (pex +ntan” ! EJ.
(n-1! a

2 3
1+xlogb+ % [dog b)? — a?] + % [dog b)?> — 3a?] log b

r

...... + X [dog b)%+ a?]""? b% cos | aBx + r tan~ 1.9
ri log b
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Calculus—II

3. EXPANSIONS

STRUCTURE

Introduction

NOTES

Convergent and Divergent Series

Failure of Taylor's and Maclaurin’s Theorem
Application of Maclaurin’s Theorem
Application of Taylor's Theorem

Another Form of Taylor’s Series

Method of Differential Equation

INTRODUCTION

A set of terms formed and arranged according to some definite law and connected
by the signs + ve or — ve is called a series. There are two kinds of series ; finite and
infinite. A series is said to be finile when the number of terms it contains is limited
and definite. For example, 2+ 4 + 6 + 8 + 10 is finite series of 5 terms whose sum is 30.

The sum of a finite series is the sum of all the terms it is made up of.

Infinite Series. A series is said to be infinite when the number of terms it
contains is unlimited i.e., infinitely large so that it has no last term. For example, 1 +
3+ 4+ to infinity, it is an infinite series each term of which is equal to one-

third of the term preceding it. It is an infinite G.P.

CONVERGENT AND DIVERGENT SERIES

If S, the sum of first n terms of an infinite series tends to a definite limit S, as n
approaches infinity, the infinite series is said to be convergent and this limit S is
called the sum of the infinite series.

Ilustration. The infinite series 1+ + + 3+ 5 + ... is convergent.
Proof. Let S, denotes the sum to n terms

then S =1+3+3+5+.... to n terms

n

1
(3) sps)ss

1-1 3") 2 231
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Now if limit of S, when 1 — oo, be denoted by S, then
3

=— ( asn—)ooLeo)
S_2 . ,311—1

Since the limit of S, when n — o is definite and finite ; the series is convergent.

The second kind of the infinite series in which S , the sum of first n terms does
not tend to a finite limit but increases beyond all bounds as n increases indefinitely, is
called a Divergent Series. It is evident that the question of the sum of a non-
convergents series does not arise.

IMlustration 1. The series 1 + 2+ 3+ 4+ ... o 18 a divergent series.
nn+1)
2
Since the limit of S, when 1 — o is not definite and finite, the series is divergent.

Here S, = and nl_l)tm S, = Lt n(nT+1) =0

n— e

Note. If we do not take into consideration convergency and divergency of series we may
be led to erroneous conclusions as the next illustration will show.

Illustration 2. is a function of x and we can represent it by an infinite

1-x
series :

By actual division, we have =1+x+x2+28+ ... +x"+ (D)

an equality which may be expected to hold good for all values of x.

1

Putting x = 3, we get T3:1+3+32+33+ ......
or —1=143+32+3%+ .

This is an absurd result for a small negative quantity is equal to a very large
positive quantity.

The absurdity is due to the fact that the infinite series on the right hand side of
(1) which is a G.P. is convergent only if x lies between — 1 and 1, and therefore we are
not justified in putting x = 3 on both sides of (1).

3. Taylor’s Infinite Series

If a function f(x) possesses dertvalives of all orders in the interval (a, a + h),
then for every integer n however large, there corresponds a Taylor’s development with
Lagrange’s form of remainder namely

hZ hn— 1
fla+h)=fla)+hf'@+ o1 fr@+ ...+ S " Ha)+R,
where R, = % f™a + 6h) [0<6<1]
or fla+h)y=S, +R,
hz hn— 1
where S = f(a) + hf'(a) + Yl (@) + ... + D! " Ya)
Now, suppose R, — 0, as n — oo, then
Lt S,=fla+h
hZ hn— 1 )

or f(a)+hf(a)+2—!f(a)+ ...... +( _1)!/‘"* (@ + ...

converges and its sum is equal to f(a + h).
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Calculus—II This leads to
Theorem. If f(x) be a function

() possessing derivalives of all orders in the interval (a, a + h) and
n

NOTES @) Taylor’s remainder R = o /" (a + 6h) tends to zero as n — «, then
h? _, h® :
f(a+h) =f(a) + hf'(a) +? f'(a) +...... +—' fr(a)+...+ad inf. ...(A)
! n!

This theorem expands f(a + h) in an infinite series of ascending integral powers
of h and the series is called Taylor’s infinite series.

Other Forms of Taylor’s Infinite Series :

() Writing x for a, in (A), we have

h2 h"
fx+h)=f(x) +hf' x) + — f"(x) +...... + — fr(x) +.....
n!

@) Puttinga+h=borh=b-a, in (A) we get

2 n
f(b)=f(a)+(b—a)f’(a)+(b “) Fra@ o+ 8= “) 2= fra)+ ...

(1) Changing a+htox 1i.e, htox—a,in (A), we have

(x - 05)2 (x-a)

fo=fla)+x—a)f (@ + —— " () +...... +Tf”(a)+ ......

which expands f(x) in ascending integral powers of (x — a).

Cor. Maclaurin’s Infinite Series.
When a =0 and h = x in the above theorem, we notice that if

() f(x) possesses dertvative of all orders in the interval (0, x) and
n
. . . x
@) Maclaurin’s remainder R = — [ (0x) tends to zero as n — o, then
n!

x2 x"
f(x) = £(0) + xf'(0) + £"0) +...... + ; ) +...... ad. inf.

which is known as Maclaurm s infinite series.
Note. If the function f(x) is denoted by y, then the expansion may be written in the form
2 n

=IO X3 O Ty Yy O b et Ty O F

where y(0), ¥,(0), ¥,(0), ......, , ¥,(0) etc. denote values of , yl, Yop-oonns ¥, Tespectively for x = 0.

FAILURE OF TAYLOR’S AND MACLAURIN’S THEOREM

(a) Taylor’s theorem fails to expand f(x + h) in an infinite series in the following
situations :
(@) if any of functions f(x), f’(x), /”(x) .... becomes infinite or does not exist for any
value of x in the interval under consideration,

or @) if R does not tend to zero as n — .

(b) Maclaurin’s theorem fails to expand f(x) in an infinite series in the following
situations :

@) if any of f(x), f'(x), f"(x) ...... becomes infinite or does not exist in the closed

interval [0, x],

or (1) if R does not tend to zero as n — oo.
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Note. We observe that before we can expand a given function as an infinite Taylor’s or
Maclaurin’s series 2 it is essential to examine the behaviour of R as n tends to infinity. But this
is not simple in many cases. We, therefore, generally obtain the expansion by assuming the
possibility of expanding it in an infinite series by assuming that R tends to 0 as n tends to

infinity.

APPLICATION OF MACLAURIN’S THEOREM

Working Rule

1st Step. Put the given function equal to f(x).
2nd Step. Differentiate f(x), a number of times and find /' (x), f (), [ ”(x) ....
and so on.

3rd Step. Put x =0 in the results obtained in 2nd Step and find
f0), £7Q0), £70), f” (0) ...... and so on.

4th Step. Now substitute the values of f(0), f(0), f”(0), f”(0), ...... in,

2 3
£(¥) = f0) + xf"(0) + % £7(0) + % £70) + ...

Example 1. Expand a* and e in powers of x, by Maclaurin’s theorem.

Sol. Let [(x) =a* f0)=a’=1
then f'(x) =a*log a f7(0) =log a
/() = a* (log a)* /7(0) = (log a)*
17 () = a* (log a)® f7(0) = (log a)®
and SO ON Lo

2 3
Now Maclaurin’s expansion is f(x) = f(0) + xf’(0) + % f70) + % 70+ ...

Putting values of /(0), f'(0), f”(0), f”(0), we have

x?2 x3
a"=1+xloga+§(loga)2+?(10ga)3+ ...... (D)
x? x3
Putting a = e, we have e"=1+x+?+?+ ...... .. (2

Note. The series (1) and (2) are called exponential series and are convergent for all
values of x.

Example 2. Expand log (1 + x) in powers of x.

Sol. Let fx) =log (1 + x) f(0)=log 1=0

then £/(x) = Tlx =(1+x)! o frO)=1
[7@)=CDA+x)? o fTO)y=-1
7@ =DE)A+x)732 7 0)=2

[P = EDEDEA+ L o [0 =-23=-6
and so on.
Putting these values of f(0), f’(0), f”(0) ete. in Maclaurin’s expansion,
x

2 3 4
f) = f(0) + xf"(0) + % £7(0) + % [0+ 2 [0+
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Calculus—II 2 3 4

we have 10g(1+x)=0+x—x—+x——x—+ ......
2 4
2 3 4
or log(1+x)=x—?+%—%+ ......
NOTES Changing x into — x, we have
2 3 4
x x x
1 1-x)=-x-"—-"——-"——....
og(l-x)=-x-" -5 -7
Cor. (1) log (1 +x) —log (1 —x)
x? %3 xt 2 X 1t
=lx——+=-"—+... B B e
2 3 4 2 3 4
1 1+X =2 X+X_3+£+£+
ogl_x = 3 5 R

2 3 4
Cor. (i1) log(1+x)m=mlog(1+x)=m[x—x—+x——x—+ ...... }

Note. The above series for log (1 + x) is called logarithmic series and is convergent i.e.,
valid for | x | less than 1 and also for x = 1.

Example 3. Expand sin x and cos x in powers of x and hence find cos 18°.

Sol. Let f(x) =sin x f(0)=0
then [’ (x) =cos x f'0)y=1
f7(x) =—sin x S f0)=0
f”(x) =—cos x s [0y =-1
f(x) = sin x s fr0)=0
fU(x) =cos x L fruoy=1
and SO ON,
Putting these values of f(0), f’(0), f”(0), f”(0) in
x? 3
f8) = fO) + 5 "(O) + Gy £7O) + 5y [7O) + .,
we have sinx=0+x(1)+;—2!(0)+§—?;(—1)+Z—4!(O)+3;—5!(1)— “““
or sinx=x—§—3;+);—5!— ...... E))
x2  x?
In a like manner, we get cosx=1- 51 + T .2

Note. Series (1) and (2) in Example 3 are convergent for all values of x.
To find cos 18°.
n 314

Now x=18 21—021—020.314

Putting x = 1—% in (2), we get

T T 2 1 T 4 1
cosl8°=cos—=1—(—) —+(—) —
10 10 2!

46  Self-Instructional Material



2 4
=1- (0.314) + (0314) — [ 1:.314 approx}
2! 4! 10

=1-0.04929 + 0.00040 = 0.95111 = 0.9511 nearly.

Example 4. Expand sin~ ! x upto four terms in powers of x.
Sol. Let fx) =sin" 1 x f(0) =

1
Also /() = W =1-x512 .  fO=1

Expanding by Binomial theorem,

fx)=1+ (_ %) (—x?) + (_ ;j (_ gj (- x2)? . (_ ;j (_ gj (_ gj (—x2)3 +

2! 3!
By Binomial theorem (1 + x)" = 1+ nx + n(nz: b x? + nin - 2'(’1 —2 X3+ }
oy s L2 3.4 156
or f(x)—1+2x +8x +48x+ ......
f7(x) =x +g xS+ %xt; + o, £70)=0
”r 9 2 75 4 ”r
f (x)=1+§x +?x + ... f70)=1
() = 9x + 7—25x3 o £0) =0
f“(x)=9+2—25x2+ ...... f20)=9
fUi(x) = 225x + ... fU0)=0

and proceeding further, fv%(0) = 225, etc.

Putting these values in Maclaurin’s expansion,

x2 %3
fx) = f0) + xf"(0) + o7 ["(0) + —' £70) + ... ,
2 3 4
we have sin~ 1x—0+x+— (O)+ (1)+ (0)
5 x6 x7

(9) + — (O) + — (225) + .

Note. To expand an alone inverse function ; find its first derivative. Expand by Binomial
Theorem and then find other derivatives.

Example 5. Expand tan!

Sol. Let f(x) =tan ! x, s f0)=
then @) =—s=1+x9)" o f(0) =1
=1—-a?+at—a8+ ... [By Binomial Theorem]
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Calculus—II [7(x) = —2x + 4x° —6x° + ... f70) =0

[7(@)=—2+12x2 — 30x* + ... [70) =-
[v(x) = 24x — 120x° + ... f70) =0
NOTES o) =24 —360x2 + ... [70) =24

and SO ON
Putting these values of f(0), /'(0), f”(0) etc. in Maclaurin’s expansion,
2 3
f(x) = f(0) + xf"(0) + o7 £7(0) + f”’(O) + ... , we have

2 3
4 x5

tan- x—0+x+—(0)+x (—2)+ [0S @

o x &

tan lx=x——+——-—+ ...
or an"ly=y— ot

Note 1. The expansion for tan ! xis valid only if - 1 <x <1.
2. This expansion for tan~ ! x known as Gregory’s series is very useful for finding the
value of m.

Example 6. Expand tan x by Maclaurin’s Theorem as far as x° and hence find
the value of tan 46° 30" upto four dectmal places.

Sol. Let f(x) = tan x f(0) =
then f'(®)=sec2x=1+tan?’x Note this step f0=1
[7(x) =2 tan x sec?x =2 tan x (1 + tan? x)
=2tanx+ 2 tan® x S f70)=0

[7(x) = 2 sec? x + 6 tan? x sec? x

=2(1 + tan? x) + 6 tan? x (1 + tan? x)

=2+ 8tan?x + 6 tan* x s f7(0)=2
f(x) = 16 tan x sec? x + 24 tan® x sec? x

= 8 sec? x(2 tan x + 3 tan® x)

=8(1 + tan? x) (2 tan x + 3 tan® x)

= 16 tan x + 40 tan® x + 24 tan® x f20)=0
fU(x) = 16 sec? x + 120 tan? x sec? x + 120 tan* x sec? x
=8sec? x (2 + 15 tan? x + 15 tan* x) s fu0)=16

Putting these values in Maclaurin’s expansion,

2 3 ot x°

1) = ) + 5 (0) + 5 [ 7O) + 5 [7O) + T [O0) + 5y [0+

3 x5

we have tanx—0+x+%‘2+a‘16 ......
x3 2 o
or tanx—x+?+15 + ...... (1)
Deduction. Here x = 46° 30’ = (46 %J o 10=60 - 30 = (%)
93 93 =&
= (?) =5 X ﬁ Radians
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then

31 g 31x11 341

12077 T 60x7 gm0 812
Putting x = 46° 30" = 0.812 in eqn. (1), we have
0.812)°% 2
tan 46° 30" = 0.812 + % +1—5 (0.812)°
0.5353 2

=0.812 + +1—5 (0.3530)
=0.812+ 0.1784 + 0.047 = 1.0374.

Note. The result of above eqn. (1) can be used as a formula also.

X

Example 7. Expand by Maclaurin’s Theorem xe R as far as x°.
e* +
Sol. L. _ o= -1
ol. Let f(x)—ex+1 & f()—e0+1—2
e*+1e*-e".e" e e? 1
’ h = = . ’ O = = —
f (X') (ex 4 1)2 (ex 4 1)2 f ( ) (eO + 1)2 22
. (e +D? e —e* 2e” + e  (e* +1De" — 2™
f (x) = x 4 = X 3
(e* +1) (e*+1
2x x 2x x 2x 0 0
e +et —2e e’ —e e —e
= x 3 Tk 3 f”(O):ﬁ:O
e*+1 e*+1 e”+1
> (e + 13 (¥ —2e™) — (" —e™).3(e* + 1* e”
7= p 6
(e*+1)
(e’ + D? [(e* + D(e* — 2e%) — 3e* (™ — 2¥)]
(e* +1)°
e* —4e%* 4 3 1
= - [0 =-=
(e* +1* /O 23
Putting these values of f(0), f’(0), f”(0), f”(0) in Maclaurin’'s expansion
x? x3
f() = f(0) + xf"(0) + 57 f70) + 37 70+ ...
e 1 x &
We have i1 §+Z_4_8 ......

Example 8. Prove by Maclaurin’s Theorem that

. x2 3.x?
esiny = I 4+ — -7 4 .
"tT12 1234
Sol. Let f(x) = es™* f0O)=¢e"=1
f/(x) = e'"* cos x s f0)=ecos0=1
f”(x) = es" ¥ (— sin x) + cos x '™ ¥ cos x
= 5" ¥ [cos? x — sin «] S fr0)=e[1-0]=1

[7(x) = e'"* [2 cos x(— sin x) — cos x] + 5" ¥ cos x . [cos? x — sin x|
=¥ cosx. [-2sinx— 1+ cos? x —sin x|
= — %" ¥ cos x[3 sin x + sin? x| s f70)=0
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Calculus1II fiU(x) =— e cos x[3 cos x + 2 sin x cos x] + e+ . sin x[3 sin x + sin? x]
—[3 sin x + sin? x] cos x s * . cos x

[ —(uvw)zuv—+uwﬂ+vwd—u}
NOTES x x dx dx
s fP0)=-3
Putting these values in Maclaurin’s Theorem, namely
2 3 4

X X

1) = ) + 3 (O + Gy [7O) + 57 [ 7O+ g7 /O + .

2 X3 4
we have e51”=1+x‘1+2—!‘1+§‘O+4—!(—3)+ ......
x? 3x?
=1l+x+— — +......
1.2 1234

Example 9. Expand e® cos bx, as an infinite series of ascending powers of x.
Give also the (n + 1)th term of the above series.

Sol. Let f(x) = ™ cos bx,
f(x) =a.e*™ cos bx —e™ sin bx . b = e™ (a cos bx — b sin bx)

f7(x) = ae™ (a cos bx — b sin bx) + e* (— ab sin bx — b? cos bx)
= e™ [(a® — b?) cos bx — 2ab sin bx]
7 (x) = ae™ [(a® — b?) cos bx — 2ab sin bx]
+ ™ [(@® — b?) (- b sin bx) — 2ab? cos bx]
= ™ [a(a? — b?) cos bx — 2a?b sin bx
— b(a? — b?) sin bx — 2ab? cos bx]
= e™ [a® cos bx + b? sin bx — 3ab? cos bx — 3a?b sin bx]

f‘n(x’) = ((12 + b2)n/2 % cos (bx +ntan” 1 %J

Putting x =0 in the above
fO)=1, f'©)=a, f"(0)=a?-b*

£70) = a@®—3b?, ........... £0) = (@ + bH"2 cos (n tan~! %)

Putting these values of f(0), f’(0) ete. in Maclaurin’s expansion
x? x3 x"
() = f0) + 2/ "(O0) + 57 /7(0) + 37 f7O)+ ... - [0+ ...

a®-b* , ala®-3b% o

we have e®cosbx=1+ax+ ; + .
21 3!
2 2\n/2
a“+b _1 b
...... + % X" Ccos (n tan™? —) + .
n! a

Example 10. Expand sin (e* — 1) upto and including the term x*.
Sol. Let f(x) = sin (e*— 1).

Put x =0, f(0)=sin (®—1)=sin0=0

: f'(x) =cos (e—1) . e*=¢e*cos (¥ — 1)

Putx=0, f’(0)=ecos(1-1)=1cos0=1.
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Again diff. w.r.t. x,
f7(x) =e [-sin (e“—1)] e* +cos (e°— 1) . e*
or [7(®) =—e*sin (e* — 1) + e* cos (e — 1)
Putx=0, f7(0)=0+1cos0=1.
Again diff. w.r.t. x,

[7@) =~ [e¥ cos (e*— 1) . e* + sin (e~ 1) . €2 2]
+ e [-sin (e—1).e*]+cos (e5—1).¢e"
or [7(x) =—e3* cos (e* — 1) — 3e%* sin (e*— 1) + e* cos (e — 1)

Putx=0, f/"(0)=—1-0 +1=0.
Again diff. w.r.t. x,
f(x) =—[-e*sin (e*—1). e +cos (e“—1) . e*. 3]

— 3 [e*cos (e —1). e +sin (e¥—1). % . 2]

—e*sin (e*—1).e“+cos (e“—1) . e
Putx=0, f*0)=-3-31+0-0+1=-5
Putting these values of f(0), £’(0), f7(0), f”(0), f **(0) in Maclaurin’s expansion

2 3 4

06 = FO) + 3 ") + 7 [7O) + 57 [ O + "7 O+

2 3 4
. . X X X
We have Sm (ex—1)=0+x(1)+§(1)+§(O)+?(—5)+ .....

2 4
or sin (e¥— 1) = x+x——5i+ ......
2 24
2
Example 11. Show that log tan x =x—+ix4+ ......
x 3 90
Sol. LH.S. = log 28%
We know that
<3
tan x = x +?+EX5 +eeeens (By Eqn. (1) Example 6)
x3 5
X+—+—x" +...... xz 9
L.H.S. = log 3 15 = log 1+ + = x4 ..
x 3 15
2 3 2
=log (1 +2) :2—?+%— ...... where z:%+1—5x4+ ......
2
Puttingz=?+1—5x4+ ...... , we get
2 2 2 3
X 2 4 1( x 2 4 1 x 2 4
= |t =t = ==t =+ —=x"+
bALS (3+15x J 2(3 15 J 33 15
x?2 2 4 1(«* x? 2 xt
="—+—x - = —t—x ...
3 15 219 3 15 18
—ﬁ+E+ =R.H.S
=3 tgg T =R.H.S.
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Calculus—II

EXERCISE 1
Apply Maclaurin’s Theorem to prove (1 — 4)
2 4 6 2 4 6
X X X
NOTES 1. (a)logsecx=?+ﬁ+4—5+ ...... ) logcosx=—;—!—2.2—!—16.%— .....
2 4 4
2. (a)secx=1+;—!+%+ ...... (b) cos2x=1—x2+%+ ......
2 3
3. tanl(l+y=242 % % o
2 4 12
2 ;2 2, 12\n/2
4. e®sin bx = bx + abx® + Mx3 +.. +Mx” sin (n tan™! £)+ .....
3! n! a
2 3 5
5. (a) Show that tan ! x2 —glx-2 X .
1-x 3 5

[Hint. Put x = tan 0.]
2

(b) Expand sin™ ! ( 2x )

in series of ascending powers of x.
1+x

[Hint. Put x* = tan 0.]

P yl+a? -1

(¢) Show that tan~ x
x 2

[Hint. Put x =tan 6.]

6. Use Maclaurin’s Theorem to find the expansion in the ascending powers of x of
log, (1 + %) upto the term including x%.

2 3 4
7. Use Maclaurin’s theorem to prove that log (1 + sin x) = x — % + % - % +onen

Point out the case of failure, if any.

[Hint. See Note Example 2.]
2 3

2x
8. Prove thate*log(1+x)=x+_—+——+......
2! 3!
2 3 22 4 22 5
9. (a) Apply Maclaurin’s theorem to show that e*cosx=1+x - % - 4_x' - 5J$ e
JCZ JC3
(b) Prove that e* sec x = 1+x+2.§+4.§+ .....

10. Expand by Maclaurin’s theorem tan? x in ascending powers of x as far as x*.
11. Expand log (1 + sin? x) in powers of x as far as the term containing x*.
12. (a) By Maclaurin’s theorem expand log [1 —log (1 — x)] in powers of x as far as the term
in 3,
(b) Expand by Maclaurin’s series log [1 + log (1 + x)] in powers of x as far as term
containing x°.

13. (a) By Maclaurin’s theorem find the first four terms in the expansion of log (1 + tan x).

x? 2% 7t

b) P thatlog (1 +tanx) =x - —+ —— - ——+......
(b) Prove that log ( an x) = x 2 3 12
2 3 4 5 6 7 8
14. Showthatlog(l—x+x2)=—x+x—+2i+x——x——2i—x—+x— ......
2 3 4 5 6 7 8

3
Hint.log(l—x+x2)=log(1+x
1+x

J:log(1+x3)—10g 1+ x).
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Answers Expansions

2 4
5. (b)2{x2—1x6+1x10— ...... :' 6. log2+£+x——x—+ ......
3 5 2 8 192
4
7. Case of failure is sin x=—1 10. x2+2%+ ..... NOTES
1. 22-244y 12 (a)x+£+ (b)x—x2+1x3+
. g ten . g T g %t
2 3 4
13y 20 Tx
2 3 12

APPLICATION OF TAYLOR’S THEOREM

Working Rule can be stated as :

Step 1. Put the given function equal to f(x + h).

Step 2. Put h =0 and write f(x).

Step 3. Differentiate f(x) a number of times and obtain f’(x), /7 (x), [ 7 (x),

Step 4. Now substitute the values of f(x), f'(x), [ "(x), ..... in Taylor's expansion
2 B3
flx + h) = fx) + hf "(x) + o1 [ + 31 f7@) + ...
Example 1. Apply Taylor’s Theorem to find the expansion of log sin (x + h).
Sol. i) Let  f(x+ h) =log sin (x + h)
(1) Putting h = 0, we have f(x) = log sin x

1) .. ‘X) = ——— =cotx
(2] f( Sin x
[”(x) = — cosec? x
7 (x) = — 2 cosec x(— cosec x cot x) = 2 cosec? x cot x.

2 3
) ) h
log sin (x + h) = log sin x + h cot x — 57 (cosec?x) + 37 (2 cosec? x cot x) + ......

: n* n’
=log sin x + h cot x — 3 cosec? x + 5 cosec? x cot x + ......

Example 2. Expand sin~ ! (x + h) in powers of h.
Sol. @) Let f(x+h)=sin"!(x+h)
(i) Putting h = 0, we have f(x) =sin~ ! x.
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@) .. [/ (x) = >
1-x
PN | 24— 3/2 _ x
NOTES 7@ = =5 A=) =20 =
5 B (1_x2)3/2_%(1_x2)1/2 (_2x)x
Q- A-2%+3x%)  1+24°
- (1-x2)3 T 1= 22

Putting these values of f(x), f'(x), f”(x), f ”(x) in Taylor’s expansion,

2
@v) fix+ h)=f(x)+hf’'(x)+ % f”(x) +...., we have

h N x h_2 1+ 2x2 h_3
1_x2 (1_x2)3/2 : 2‘ (1_x2)5/2 . 3]

sin“! (x+h)=sin"lx+

Example 3. (a) Expand sin (x +y) in powers ofy and deduce that
sin (x +y) =sin x cosy +Siny cos x.

(b) Obtain the value of sin 31° correct to four places of decimals.

Sol. (a) (@) Let f(x +y) =sin (x +y)

(1) Putting y = 0, we have f(x) =sin x
@) .. f'(x) =cos x; f”7(x) =—sin x,
7 (x) = —cos x, f(x)=sinx, ......
.......................... , and /(x) = sin (x + nmn/2)

By Taylor’s expansion,
y* y"
flx+y) = flx) + yf"(x) + 91 fr@+ ... e frx) + ...

Putting values of f(x), f'(x), ...... /(x), we have,

y? y°
sin(x+y)=sinx+ycosx—§sinx—§cosx
4 n
+y—smx+ ..... +y—sm(x+—)+ ......
n!
2 4 3 5
Y Yy Y Yy
_ 1-2 42— . S AR A
s1nx{ CYRVY :|+cosx|:y 3!+5‘ ......
=8In X COS ¥ + COS X sin y.
G Putx=30°=2 and y=1°=—— =.0175 radians in (1),
6 180

Then sin 31°

.M 0n m ( Jz 1 . =
sin =+ —cos——| —| —sin—......
6 180 6 180 ) 2! 6
(.0175)2
2—!(.5) ......

=.5+.0151550 — .0000765 = .5150785 = .5151,
correct to four places of decimals.

=.5+ (0175)(.866) —
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Example 4. (@) If f(x) = x° + 8x2 + 15x — 24, calculate the value of f(£L) by the
application of Taylor’s series.

@) f(x) =x°— 2x + 5, find the value of f(2.001) with the help of Taylor’s Theorem.
Find the approxtmate change in the value of f(x) when x changes from 2 to 2.001.
Sol. (i) By Taylor’s theorem,

2 3
flx+h)=[f(x)+ hf’'(x) + % [7(x) + % 7@ +...... e))

. 11) . 1
To f — | ie 1+—
o find f(lo) 1.e., f( +10)

Putx=1and h= 1—1) in the series (1),

1 1

1

f(i—(l)) = f(1+1_0) = f(1) + 1—2 /() + W.%f”(lﬂ%. 07 f7M+.....
(2
Now f(x) =a°+ 8x%+ 15x—24 (=0
[7(x) =3x*+ 16x + 15 /(1) =34
f7(x)=6x+ 16 f7(1) =22
[7(x) =6 f71)=6
fiux)=0 (1) =0
Substituting values of f(1), f’(1), f”() ..... ete. in (2), we get
f(1+i) o+ taar 2 1 _54h 11+ 00128511
10 10 100 1000
(1) Here put x = 2 and h = .001 in Taylor’s series
h? n?
flx + h) = fx) + hf "(x) + Z—!f”(x) +yf”’(x)+ ..... ,
we have  f(2.001) = /(2) + (001) /'(2) + ('03‘1)2 [+ (-0:2'1)3 [7@) (3)
Now f(x)=a>—-2x+5 f2)=9
[7(x) = 3x? — 2 [(2) =10
[7(x) = 6x [7@2)=12
[7(x) =6 [7@2)=6
fr@=0 2 =0

Putting these values in (3),
1 1
f(2.001) =9+ (.001) 10+ 57 (001)? (12) + 25 (007 (6) + .....

=9+ .01+ .000006 + .000000001 =9.010006001 = 9.01 approximately
Approximate change in the value of f(x) as x changes from 2 to 2.001

= /(2.001) - f(2)
=9.01 — 9= .01 approximately.

Self-Instructional Material

Expansions

NOTES

55



Calculus—II

EXERCISE 2

Apply Taylor’s Theorem to prove the following expansions :

NOTES
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9 1 2 3
(b)ex+}t:ex+hex+h—ex+ ...... (C) = 1 h h i
21

x+h x x2 x3 x4
3
(d) tan (x+ h) =tan x + h sec? x + h® sec? x tan x + %secz x(1+3tan® x) +......

i 1 n: R
— =— [1- —+—+......
(a)cos(4+hJ ﬁ( h— 2'+3'+ J

b 1 02 o°
in | — =— |[1+0—-——-——+......
(b)sm(4+9} ﬁ( CYRREY ]

2x2—1 h?
(@) sec™ ! (x+ h) =sec ! x\/x — x2 7 .2—!+ .....
_ _ h xh?
(b) tan~ ! (x+ h) =tan" ' x + 11 - (1+x2)2
Prove that ot +fx=h _ =flx )+ f”( )+ — fw(x) + ..

2
(a) Expand a* by Taylor’s Theorem.

x+h

[Hint. First expand a in ascending powers of h as in Q. 1(a). Then put x =0

and change h into x.]
(b) Expand sin x and cos x by Taylor's Theorem.

(@) Find the approximate change in the value of 5x> — 3x? + 7x — 8 as x changes from 3 to

3.001.

(b) If f(x) = x> — 6x2 + 7; find the value of f ( ) by Taylor's Theorem. Also find the

change in the value of f(x) when x changes from 2 to 2.1.

1
(0 If f(x) = 3x> — 5x% + 7, find the value of f( J by Taylor’'s theorem and find the

change in the value of f(x) when x changes from 2 to 2.1.

(d) If f(x) =2 + 252 — 5x + 11, find the value of f (%) with the help of Taylor’s series for
fx + h).

(e) If f(x) = x* + 6x2 + 9, find the value of f ( J by Taylor’s theorem.

Calculate the approximate value of /10 to four decimal places by taking the first four

terms of an appropriate Taylor's expansion.

[Hint. Let [ =Jx -~ f10)=410
or J10 =f10)=f(9+ 1) =f(@a+ h) where a=9, h=1

h2 h3
=fla)+hf'(a)+ — f”(a) + — f”’(a) + ...

=+ O+ 57 f O+ 3 f 7O+ ]



8. (a) Calculate the approximate value of /17 to four decimal places by taking first three

terms of a Taylor’s Expansion.
(b) Calculate the approximate value of 4/26 to three decimal places by Taylor’s expansion.

2 3
— _ X ’ X ” _ 1 11
x]—f(x) _1+xf(x)+(1+xj ") (1+ J 3'f @) +......

2
9. Prove that f( X
1+

2 2 _ _
Hint. Write —— =~ rx x:x(x+1) Yoy 2 =x+ h, where h = — x
1+x 1+x 1+x 1+x 1+x
Answers
2 3

x x
5. (@a*=1+xloga+ _7 (log a?+ —— (log a)’+ .

. x® x5 2 x*
(b) sinx=x—gy +a —.‘.,cosx=1—2—! +4—!—..‘
6. (a)0.124 (b) 1.5426 (¢) 4.960375, 1.733
(d) 8.849 () 17.591
7. 3.1623 8. (a) 4.123 (b) 5.099.

ANOTHER FORM OF TAYLOR’S SERIES

In this form f(x) is expressed as a series in ascending integral powers of x — a.
We have fx)=fla+x—a). Letx—a=h.
h 3
f®)=fla+h)=fa) +hf' (@ + — f "(a) + —' 7@+ ..
Now replacing h by x —a, we get

(x - a)2 (x - a)3

f@+—F— 1"+ ...

f)=fla)+ (x—a) f'(a) +

. . m
Example 1. Expand sin x in ascending powers of (x - EJ
Sol. Here f(x) = sin x

We know that fy=7rf (g +x— g)

[ We have done this step to get (x - gﬂ

= fla + h), wherea=g and hzx—g

2 4

i, ) = fl@) + b @) + o [ + f”’() " A ra

(By Taylor’s Expansion)
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Calculus—II

NOTES

Putting values of @ and h, we get

2
T
(= ), (T (x N 2) e
= () (s=5 ) (5t (3)
3 4
e
2 | T 2 v T
2 (§)+ 2 (§)+ ...... ()
We have f(x) =sin x f (g) =1
f/(x) = cos x f '(g) =0
[7(x) =—sin x f”(g) =—1
7 (x) =—cos x f "'(g) =0
) = sin WfZ) =
f7(x) =sin x f (2)
Putting these values of f(g), f’(g), f”(g), ....... in (1), we get
)\ !
(-5) (3]
sinx=1- 2 + 2)
21 4!

Example 2. Obtain the first four terms in the expansion of log sin x in powers of
(x - 3).
Sol. Let f(x) = log sin x
We know that
f@) =B +x-3)

= fla + h) wherea=3and h=x-3

(Note this step)

h? n?
=fla) + hf '(a) + 51 [ (a) + 31 [ @+....
(By Taylor’s Expansion)
Putting values of @ and h, we have
[0 =)+ =3 [+ & ; ?)2 1@ + & ; ;3)3 f7@3)+......
' ' (1)
But f(x) =log sin x; Puttingx=3; f(3)=1log sin 3
f/(x) = — (cos x) =cot x ; f’(3) =cot 3
sin x
[7(x) =—cosec? x ; f”(3) = — cosec? 3
7 (x) = —[2 cot x (— cosec? x)] ;

= 2 cot x cosec? x f£”(3) = 2 cot 3 cosec? 3

Putting these values in (1), we get

(x - 3)% 23+(x—3)3

cosec cot 3 cosec?3 + ...

log sin x = log sin 3 + (x — 3) cot 3 —

58  Self-Instructional Material



et

Lol o

=

EXERCISE 3.3

(1) Expand e in power of (x — 2). (1) Expand log x in powers of x — k.
(iir) Expand a* in powers of x — a. (iv) Expand 4x? + 7x + 5 in powers of x — 3.
Expand log sin x in powers of (x — 2).
Use Taylor's Theorem to express the polynomial 2x* + 722 + x — 6 in powers of (x — 2).
Expand tan x in powers of (x - %J upto first four terms.
12,2
Show that flax) = f(x) + (@ — 1) xf'(x) + (a% [+ .
[Hint. f(ax) = f(x + ax — x) = f(x + (a — 1)x] = f(a + h) where a=x, h = (a - 1)x.]
If 0 < x <2, then prove that
12 _1)3 _ 14
logx=(x-1) - (-1 + -1 - @-1D +ons
2 3 4
Answers
_9)2
Q) e® [1+(x—2)+ (x2'2) Fo,

1 1
@) log k + 1 x—k)——5 (x-R)*+ —3 x-k)*— ...
k 2k 3k

2 3
(iii) a® [1 tx-a)loga+ 5 f‘) (log a)? + & . f‘) (log @)® +......
@v) 62 + 31 (x—3) + 4 (x — 3)2.
_9)2 _ 93
log sin 2 + (x — 2) cot 2 — -2 cosec? 2 + «-2) cot 2 cosec® 2+ ...

40 + 53(x — 2) + 19(x — 2)% + 2(x — 2)3.

T T 2 8 T 3
1+2(x——)+2(x——) +—(x——) +.....
4 4 3 4

METHOD OF DIFFERENTIAL EQUATION

asin”

Here below we shall explain a method to expand functions like (sin™ 'x)2,

1
X

>

sin (m sin~ ! x), cos (m sin~ ! x) etc.

These functions can also be expanded by the working rule given in Art. 5, but

the finding of successive derivatives for these functions is very complicated and hence
avoided.

The working rule for the above mentioned functions is being given below :
1. Put the given function equal to y.

2. Findy, = %

Self-Instructional Material

Expansions

NOTES

59



Calculus—II

NOTES

or

or

or

or
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sin (m sin~'x)=mx +

Then @) Take L.C.M. (if possible)

(1) Square both sides if square roots are there.

@) Try to get y in R.H.S. (if possible).
3. Again differentiate both sides w.r.t. x to get an equation in y,, y,, y.
4. Differentiate both sides n times w.r.t. x by Leibnitz Theorem.
[Leibnitz Theorem is

wv),="Cou, . v+"Ciu, v, +"Cy.u, 0,7+ ... +7C, uv, ]

5. Put x = 0 in equations of steps 1, 2, 3, 4.
6. Putn=1, 2, 3, 4 in last equation of step 5.
7. Now to find y, (0), discuss the two cases when n is even and when n is odd.
Example 1. Prove that

2 2 2_ 2 2_ 2
m(l* -m )x3+m(1 m-)(3° -m )x5+

3! 5!
. m(12 -m?)3% —m?).....[2n - 3)% —m® x* ! .
...... Zn-1)!
Sol. Let y = sin (m sin™ ! x) (D)
Differentiating w.r.t. x, y, = cos (m sin~ ! x) m - .. (2
1-x

\J1-x% y, =m cos (m sin~ ' x)

Squaring both sides (1 — x%)y,? = m? cos? (m sin~! x) = m? [1 — sin? (m sin~! x)]

(1 —x%y,* = m*(1 —y%) [By (D]
Again differentiating w.r.t. x,

(1-29)2yy, + 5,2 (- 20) =m? (- 2yy)) or 2yy, (1-x?)—2xy; +2m’yy; =0

Cancelling 2y, ; y,(1 —x%) —xy, + m?y =0 ..(3)
Differentiating both sides n times ;
d" 9 d" d" 9
[yo(1—x%)] - ly; . x]+ (m°y) =0
dx" Y2 dx" 1 dx" Y

nCO ()/2)" (1 — x2) + nCl(y2)n— ) (_ 2%’) + nC2(y2)n L (_ 2)
—["Co), - x+"Cy . (), ;- 11+ m?y =0
Yoo 1=2%) =2nxy,  —nm—1y, —xy, ., —ny, +m?%, =0

( I’LCO = 1, ncl =n, nCz = —n(n —_ 1)]

21

A-xdy, ., —Cn+ Dy, ., —0>—m?)y =0 (4
Putting x=01n (1), (2), (3) and (4), we get
y =sin (0) =0 = f(0)
y,=mcos 0=m=f’(0)
¥, =0=7"(0)
Yo+o = M7= m)y,

Putting n=1,2,34iny, ,,=@®?—m?y ;we get

¥y = (12 =m?)y, = m(1*—m?) =f"(0)

¥, =@ =mPy,=0=f"(0)



Y5 = (32 = m?y, = m(1* — m*)(3* — m?) = £ *(0)
Y= (42 —=m2y, =0=fv(0)

Generalising

Whenniseven y (atx=0)=0 (= y,=0,y,=0,y,=0)

and when n is odd
y, (atx=0)=m1%—m?) (32 —m?) ...... [(n —2)2 —m?]

In particular y, , (Replacing n by (2n — 1) in the above equation
=m(12-m?)B2-md ...... [@2n - 3)2 — m?]

We know by Maclaurin’s Theorem that

2 3 4 5
f() = f(0) + xf(0) + % £7(0) + % £7(0) + % [70(0) + % (0)

xZn—l

+
@2n-1!

[ 10 +

Putting values
2 _ 2 2 2yq2 _ 2
sin (m sin*lx):mx+m(13'm )x3 m(l m5)'(3 mn )x5+...
N m(12 - m?) 3% -m?).....[2n - 3)%2 - m?] -1
2n-1!

Example 2. If y = (sin~ ' x)? show that
(@ (1-x")y,~xy, =2

(sin_lx)2_x2 22, 27 4%

(b) P —2—!+4—!.x +T.’)C +......
Sol. Let y = (sin~ ! x)?
1
y,=2sin" ! x %
1/1—x2
Le., J1-2% .y, =2 V. Squaring both sides (1-x2)y,? = 4y.

Differentiating again,
A —a%) . 2y,y, +¥,% (— 2x) = 4y,
Dividing by 2y,, (1 —a%)y, —xy, =2
which proves part (a).
Differentiating (3), n times by Leibnitz’'s Theorem,
1=y, .o+ "Cy, C20+"Cyy, 2=y, ;. x+"Cyy,. 1]1=0

or A-x?y,.,—2nxy, ., —nm—1y —xy ,,—ny, =0
or A=xDy ,,—Cn+ 1y, ,, =n’,
Putting x=0,1n (1), (2), 3), 1), we get

y=0, =0, y,=2
O+ 90 = 70,0
Putting n =1, 2, 3, 4 in the last equation, we get

y3: 12y1:0
y, = 2%,=22 2=22°
¥, =3%,=0

ye = 4%y, = 2.2% 42

(D
(2

..(3)

(4

Expansions

NOTES
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Calculus-I1 -~ By Maclaurin’s Theorem,

2 3
f(x) = f(0) + xf"(0) + % £7(0) + % 70+ ...

NOTES %’ 2 Ea Ll =
or y= 0’)0+x(3’1)0+ 21 (y2)0+ 31 (y3)0+ 41 ()’4)0+ 51 ()’5)0+ 61 (y6)0+
2 3 4 5
. X X X x
(sin~! x)2 =0 + x(0) + o1 2+a .(0) + il (2.2%) + 5(0)

x® 2 42
+a(2.2 A+

or 5 - T +orat 51 x% +.. which proves part (b).
EXERCISE 3.4
1. Show that
2 2, o2
GOSN 14 g a®?  ala®+1) I a(a® +2%) A ala” + Da” +37%) Do

2! 3! 4! 5!
.2

S 6+£sin36+ ......

21 3!

[Hint. Put =1 and sin"! x=0 i.e., x=sin 0 in the above expansion]|

Hence deduce that e® =1+ sin 0 +

2. Ify=cos (m sin~!x), prove that (y, . ,), = % — mA)(,),.

Hence evaluate (y ), and expand y = cos m (sin~ ! x).

2.2 2 2 2,2 2
-1 -2
3. Provethat(x+\/1+x2)n:1+nx+nx +n(n )x3+n(n )x4+ ......

2! 3! 4!
Answer
2. Ifnisodd;y, =0
If niseven,y, =—m? (22 -m? (42 -m? ... [(n —2)* - m?]
2 2 (02 2 2 92 2 2 2
_ m* (2° -m°)(4* - m”)
cos (msin*lx)=1—m—x2—Mx4 - PR
2! 4! 6!
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Reduction Formulae

4. REDUCTION FORMULAE NOTES

STRUCTURE

Reduction Formula

Find a reduction formula for | tan” x dx and hence find | tan® x dx

To find a reduction formula for [ cot™ x dx

Find a reduction formula for | sec” x dx and hence evaluate

To find a reduction formula for [ cosec” x dx

Find a reduction formula for [ x™ (log x)"” dx and hence evaluate | x™ (log x)? dx
To find a reduction formula for [ x" e* dx

To find a reduction formula for [ x™ sin n* dx

To find a reduction formula for [ e® sin™ bx dx

To find a reduction formula for [ cos™ x sin nx dx

Find a reduction formula for | sin n6/cos 6 do

To find a reduction formula for [ sin” x dx and hence evaluate [ sin® x dx
To find a reduction formula for [ cos™ x dx

n/2 . . L. .
To evaluate J sin” x dx, where n is a positive integer greater than 1
0

/2 . L. .
To evaluate J cos™ x dx, where n is a positive integer greater than 1
0

Reduction Formulae for [ sin? x cos? x dx
Rule for connecting | sin? x cos? x dx with any one of the above six integrals
Connect [ sin? x cos? x dx with | sin?2 x cos? x dx

2. .
To evaluate J‘n sin? x cos? x dx, where p and q are both positive integers greateg
0

than 1
Reduction formula for [ x™ (a + bx")? dx

REDUCTION FORMULA

In Integral Calculus, reduction formula is a formula which connects an integral with
another integral which is of the same type but of lower degree or lower order and can
be easily integrated. The reduction formulae are generally obtained by applying the
rule of integration by the parts. The method is known as integration by successive
reduction.

Self-Instructional Material
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FIND A REDUCTION FORMULA FOR |[tan" x dx AND
HENCE FIND |tan® x dx

NOTES
[ tan® x dx = [ tan™2 x . tan2 x dx

=[tan"2 x (sec? x — 1) dx
= [ tan™ 2 x sec? x dx — [ tan"2 dx

n-1 n+l
= tan—x _ J. tann—2 x dx ( '[ (f(x))n f’(x) dx :(f’(lLJ

n-1 +1

which is the required reduction formula.

To evaluate [ tan® x dx.

) ] tan™ ! x
The above reduction formula is J tan” x dx = o1 J tan"2xdx  ...(1)
. e 5 _ tan® x 3
Putting n. =5 in (1), tan® x dx = T tan® x dx ..(2)
2 2
Putting n =3 in (1), j tan® x dx = tar; *_ j tan x dx = tan”x _ log sec x
Putting this value of | tan® x dx in (2),
4 2 4 2
J tan® x dx = tar; X _(tanz ad —log sec x] = tar; *_ tar; %+ log sec x.

TO FIND A REDUCTION FORMULA FOR J cot" x dx

[ cot™ x dx = | cot™ 2 x cot? x dx
= [cot™2 x (cosec? x — 1) dx =] cot™ 2 x cosec? x dx — [ cot™ 2 x dx
=—[cot™? x (— cosec? x) dx — | cot™ 2 x dx

cot™ 1 x
=— o1 J. cot” 2 x dx

n+l
'[ (FG)" f/(x) dx = FeN™
n+1

which is the required reduction formula.

FIND A REDUCTION FORMULA FOR J'sec“ x dx AND
HENCE EVALUATE

| sec® x dx.

2 x sec? x dx (Integrate by parts)
n—3

['sec™ x dx = [ sec
=sec"Zxtan x — | (n —2) sec™ 3 x . sec x tan x . tan x dx

=sec"2xtan x — (n — 2) [ sec™ 2 x . tan? x dx

=sec"2xtan x — (n — 2) [ sec™ 2 x (sec? x — 1) dx

=sec"2xtanx—(n—2) [ sec” x dx + (n—2) | sec™2 x dx.
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Transposing,
(1+n-2)[sec" xdx=sec"2xtan x + (n — 2) | sec” 2 x dx

sec" 2 xtanx n-2

n-1  n-1

j sec” x dx = sec™? x dx (D

which is the required reduction formula.
Alternative Form of Art. 4

Use integration by parts to derive the reduction formula :
1 m-2

sec™ 2 x tan x +
m-1 m—

j sec™ x dx = j sec™2 x dx.

To Evaluate [ sec® x dx.
Sol. Putting n =5 in (1), we have

3 3
j sec5xdx=w+zj sec® x dx (2
Putting n = 3 in (1),
t 1
j secd x dy = 22X, j sec x dx
2 2
sec x tan x 1
=—— + — log (sec x + tan x)
2 2
3 3 3
.. From (2), J sec® x dx = m + 3 sec x tan x + 3 log (sec x + tan x).

TO FIND A REDUCTION FORMULA FOR fcosec“ x dx

[ cosec™ x dx = [ cosec™ 2 x . cosec? x dx (Integrate by parts)
= cosec™ 2 x (—cot x) — | (n — 2) cosec" 3 x (— cosec x cot x) (— cot x) dx
= —cosec™2 x cot x — (n — 2) | cosec™2 x cot? x dx
= —cosec™2 x cot x — (n — 2) | cosec™ 2 x (cosec? x — 1) dx
= —cosec™2 x cot x — (n — 2) | cosec™ x dx + (n — 2) [ cosec™ 2 x dx
Transposing,
(1+n—2)[cosec™ x dx = — cosec™ 2 x cot x + (n — 2) | cosec™2 x dx

cosec” 2 xcotx n-—2
A
n-1 n-1

J cosec” x dx = — cosec™ 2 x dx

which of the required reduction formula.

Alternative form of Art. 5

Use integration by parts to derive the reduction formula :

cosec™ 2 x cot x +

j cosec™ x dx = j cosec™ 2 x dx

Reduction Formulae

NOTES
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FIND A REDUCTION FORMULA FOR [x™ (log x)" dx AND
HENCE EVALUATE | x™ (log x)® dx

NOTES
[ xm (log x)" dx =] (log x)" . x™ dx (Integrate by parts)
+1 +1
= (I n xm _ 1 n—1 l " d.
(log x —— n(og x S X
m+1 n
= n_ = m n—1
m+1(logx m+1jx (log x)* dx
(D)
which is the required reduction formula.
To Evaluate [ x™ (log x)? dx.
Sol. Putting n = 3 in (1),
xm+1 3
m 3 — 3 _ m 2 q
j x™ (log x)° dx —— (log x) — j x™ (log x)% dx ...(2)
Putting n = 2 in (1),
xm+1 9
m 2 — 2 _ m
J x™ (log x)? dx —— (log x) — J x™ log x dx ..(3)
Putting n = 1 in (1),
xm+1 1
m = _ - m 0
J x™ log x dx —— log x — J x™ (log x)° dx
xm+1 1 xm+1 m+1
= logx—— | x™dx= logx —— .
m+1 2T i1 I R (m + 12

Substituting this value in (3), we have

m+1 2 m+1 m+1
J x™ (log x)? dx = ad (log x)? — X log x X

m+1 m+1l|m+1 _(m+1)2
m+1
=2 (log x)2—L2 x™ 1log x + Ls XL
m+1 (m+1) (m+1)

Substituting this value in (2),

xm+1
m 3 — 3
j x™ (log x)° dx — 1(log )
m+1
i 2" (log 1) _szmn log x +L3xm+l
m+1{m+1 (m+1) (m+1)
m+1
3 6
= (log x)* ———— (log %) + log x — :
+1( & ml v m+ D2 2 a1’
Example 1. If u =[ (log x)* dx, prove that w tnw =x(logx)
Sol. u, = | (og x)" dx =] (log x)" . 1 dx (Integrate by parts)

1
= (log x)" x — [ n (log x)" ! . e dx
=x (log v)" —n [ (og x) ! dx = x (log x)" — nw,
w, +nu, ; =x (log x)".
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TO FIND A REDUCTION FORMULA FOR jx“ e dx

Integrating by parts, we have
NOTES

ax ax n ax
. e e x"e n .
J X" e™ dx = x" — J nx" . dx = -— J e dx
a a a a
which is the required reduction formula.

Example 2. Evaluate .[o x" e dx, where n is a posttive integer.

Sol. Step I. Let I = J:xI” eI_Ix dx (D

n

" e ® - e
Integrating by product Rule = - .[0 nx™! — dx

-1 _
=n J‘°° xn*1 e~ dx |: Lt xn e_x = 0}
0 x—>o0
or I[,=nI_, ..(2)

Step II. Changing nto (m— 1) in 2*, 1 ,=mn-11I , ..(3)
Step III. Putting the value of I, from (3) in (2), I =n@m -1 1
Step IV. Generalising I =[n(n—-1) n—2) ....... n factors] I, =n!l

n—2°

0

Putting n.=0in (1), I,= jo O e dx = jo e dx
e |
or I, = 1 =—[e=-e]=—0-1D=1 ¢ e==0)
0
Putting [,=1in (4), I =n!
EXERCISE 4.1
n/4 1
1. @IfU, = J tan™ x dx, show that U, + U, ,= 1 and deduce the value of U,.
0 _
/4
(b If1 = J tan™ @ d6, prove that n(I,_, +1 ,)) =1 where n is a positive integer.
0
1
2. IfI = j x" (log )™ dx (m = 0 and n being a positive integer), show that I, =— m 1 L.,
0 n+

and hence evaluate I,.

*This step is being done on comparing the L.H.S. and R.H.S. of equation (2).
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NOTES

m

3. Find a reduction formula for J
(log x)™

Hint. il dx='[xm+1 M dx
(log x)" x :

Answers

1 1 -6
1. (a)ElogZ—z 2.13=m

-yl L m+ 1 J‘ x™ d
X
(n-Dlogx)® 1  n-1J (logx)*!

TO FIND A REDUCTION FORMULA FOR jx“‘ sin nx dx

Integrating by parts,
i.e., using the formula JI Aldx =1 JII dx — -[di @D JII dx dx
X

— COS nx 1 = COSs nx
- — mx™ !t ———— dx

J X" sin nx dx = x™ .
n n

x™cosnx m
+_

J x™1 cos nx dx
(Integrating again by parts)

N . :
m _1 S1n nx _o SIn nx
:_M+_(xml——j(m—l)xm2 dx)
n

n n

n n n
m m-1 _:
x" cosnx = mx sinnx m(m-1 .
=— + 5 - 5 | x™2 ¢in nx dx
n n n

which is the required reduction formula.

TO FIND A REDUCTION FORMULA FOR Jeax sin" bx dx

[ e® sin™ bx dx = [ sin” bx e dx (Integrate by parts)
I 1T
eax eax
=sin” bx . - J (n sin™ 1! bx cos bx . b) dx
a a
ax s n b
_ el sinbx % j (sin™ ! bx cos bx) e* dx (Integrate again by parts)
a
ax LI (3 b ax
_eTsinbx  nb [ (sin™ by cos by) <
a a a
eax
— J (n — 1) sin™ 2 bx cos bx . b (cos bx) + sin ! bx (—sin bx . b) dx
a
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a a

e™sin" bx nb [ e™ sin™ ! bx cos bx
a

— J { (n —1) b sin™ 2 bx cos? bx — b sin” bx } ¢ dx ]

a NOTES

e™sin" bx nb [ e™ sin™ 1 bx cos bx

a a a

ax
_ j {(n — 1)b sin™2 by (1 - sin? bx) — b sin” bx} ¢ dx ]
a

e sin” bx nb [ e™ sin™! bx cos bx

a a a

ax
_ j [(n - b sin™2 bx — nb sin” be € ax ]
a
ax LI (3 b n .
¢ smox —5 e sin™! bx cos bx
a a

— b2 ) Zp? .
n n(n . ) J. P Slnn—2 bx dx — n 5 J. e gin” bx dx
a

a
n%b? e ae®™ sin” bx — nb ™ sin” ! bx cos bx
e™ sin” bx dx =

2 2

Transposing, (1 +
a

a

- b2
+ M J ™ sin™ 2 bx dx.
a

J €™ sin” bx dx

e™ sin” ! by [a sin bx — nb cosbx]  n(n — 1b>

= + 555 j ™ sin™ 2 bx dx.
a® +n*b? a® +n’b”

TO FIND A REDUCTION FORMULA FOR Jcos"‘ X sin nx dx

Integrating by parts, (Taking sin nx as second function)

. COS nx . COS nx
[ cos™ x sin nx dx = cos™ x (— ) - j m cos™ ! x (— sin x) (— ) dx
n

n
cos™ xcosnx m
= — j cos” 1 x (sin x cos nx) dx ..(D
n n
Now sin (12 — 1) x = sin nx €cos X — C0OS NX sin x (Note this step)
or Sin X €OS X = sin nx cos X —sin (n — 1) x.

Substituting this value of sin x cos nx in (1), | cos™ x sin nx dx

m
cos™ xcosnx m ) .
= — J cos ™1 x [sin nx cos x —sin (n — 1) x] dx
n n

m
cos™ xcosnx m . m .
= — J cos™ x sin nx dx + — j cos™ ! x sin (n — 1) x dx.
n n n
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NOTES

. m .
Transposing, (1+ _) j cos™ x sin nx dx
n

m
cos™ xcosnx m .
=+ — j cos”™ 1 xsin n—1) x dx
n n
m
. cos™ x cos nx m .
j cos™ x sin nx dx = — + cos™ ! x sin (n — 1) x dx.
m+n m+n

FIND A REDUCTION FORMULA FOR _[ sin nob/cos 6 dO
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&

sin n(?)

Let us connect j with j sin (n - 2)6 do.
cos O

sin n6 N sin (n—2)6 _ sinnB+sin(n-2)0

cos O cos O
_ 2sin(n-1)06cos0O
cos O

( sin C +sin D=2sin

Consider
cos 0

=2sin(n—1)0

C+D
cos

C- D)
2
Integrating both sides w.r.t. 6,
J‘ sin no do + J‘ sin (n —2)0
cos 0 cos 0
J‘ sin no

cos O

2 cos (n—1)0
n-1
sin (n — 2)0 do
cos O

d6=2j sin (n—1) 6 do=—

do = —

2 cos (n—1)0 _J‘
n-1

EXERCISE 4.2

Find a reduction formula for | x™ cos nx dx.

Ifu,= J:) x" sin x dx and n > 1, prove that

n-1
u+nn-u ,=n T . Hence evaluate u,.
n n—2 9 5

Find a reduction formula for | e® cos™ x dx.

/2
If1, .= j cos™ x sin nx dx ; show that

1 m
Im n: +
’ m+n

m+n m—1, n—1

(a) If L .= J cos™ x cos nx dx, prove that

m+n)l =cos™xsinnx+ml

m, n m—1, n—1"

BT =

, N

/2 m
j cos™ x cos nx dx, show that | = .
0 m, n m—1, n—1

m+n
2cos(n—1)6
n-1
2cos(n— 16
n-1

(@ If u, = | cos nB cosec B dB, prove that u, —u, ,=

(b If 1 = [ sin n® sec 0 dO, show that I,=- -1,

[Hint. It is Art. 11.]



sin nx Reduction Formulae

dx.

7. (a) Find a reduction formula for j -
sin x

T sin no

df is equal to 0 or m according as n is an even or odd positive

(b) Prove that J -
0 Sm ¢]

integer. NOTES

8. Prove that J. (sin')"dx=x (sin ' )"+ 11— x2 Gin ' )" —nn 1) [ sin ' "2 dx

[Integrate (twice) by Product rule taking 1 as second function.]

Answers
x™ m m(m -1
1. X" cos nxdx=—sinnx+ g & lcosnx———5 — | x™2cos nx dx.
n n n
4
5m
2. —— —15m+ 120.
16
a cos x + nsin x nn-1)
3. e™cos"xdx=""95 g5 e¥cos"lx+ 5 5 | e®™cos"2xdx.
a’+n a’+n

dx.

7 (a)J‘sinnx dx:2sin(n—1)x+J‘sin(n—2)x

sin x n-1 sin x

TO FIND A REDUCTION FORMULA FOR Jsin“ x dx AND
HENCE EVALUATE Jsins x dx

['sin” x dx = [ sin"! x . sin x dx [Integrate by parts]

sin™ ! x(—cos x) — | (n — 1) sin"2 x cos x (- cos x) dx
=_—gin"lxcosx+ (n—1) [ sin"2 x cos? x dx
=—gin"lxcosx+ (n—1)[sin"2x (1 —sin? x) dx
=—gin"lxcosx+(n—1)[sin"2xdx—(@m—1)fsin" x dx

Transposing,

(1+n-1)fsin"xdy=—sin"! xcos x+ (n—1) | sin"2 x dx.

s n-1
, 1 .
j sin" y dy=— 20 XCOSX 71 j sin™ 2 x dx (D
n n
which is the required reduction formula.
To Evaluate | sin® x dx
.5
Putting n = 6 in (1), _[ sin® ¥ dx = — W+g _[ sint x dx ...(2)
.3
Again, putting n =4 in (1), j sin x dx = — W +§ j sin?xdx ...(3)
Again, putting n =2 in (1), j sin? x dx = — m +% J sin® x dx
1 1 1 x
=3 sinxcosx+§ j 1 de—E sinxcosx+§
1 3 3
Substituting this value in (3), j sin* x dx =— 1 sin® x cos x — 8 sin x cos x + g
Substituting this value in (2),
[ st dom— L 5 55
sin® ¥ dy = — = sin”x cos x — o7 sin X cos ¥ — o sin v cos X+ o .
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TO FIND A REDUCTION FORMULA FOR fcos" x dx

[ cos™ x dx = [ cos"!
NOTES n—1

x cos x dx [Integrate by parts]

=cos"tx.sinx—J (n—1) cos™2 x (— sin x) sin x dx

=cos"tx.sinx+ (m—1)[cos"™? x . sin? x dx

=cos"tx.sinx+ (m—1)cos"2x (1—cos? x) dx

=cos"tx.sinx+m—1)fcos"2xdx—@m—1)]cos” x dx
Transposing, (1+n-1Jcos"xdx=cos"x.sinx+ n—1)[cos™2x dx

cos" ! x sin x

n-1
j cos™ x dx = + j cos™ 2 x dx
n

n
which is the required reduction formula.

TO EVALUATE | sin" x dx, WHERE n IS A POSITIVE
INTEGER GREATER THAN 1

Reproducing Art. 12, we have

sin” ! x. cos x N n-1

j sin” x dx = — j sin"2 x dx.

n

1 /2

/2 in -1 ¢n/2
. s X.COS X n .
J‘O sin” x dx = |:— —:| + J‘O sin”? x dx
n n
0

[But sin” ! x cos x =0, when x = g orx= O}

n-1

/2 . /2 .
.[o sin” x dx = .[o sin™ 2 x dx LD

n
Changing n to n — 2*, in (1)

n-3
n—2

n/2 . n/2 .
Jo sin”2 x dx = .[o sin”* x dx.

/2 (n-Dn-3)

Substituting this value in (1), .[o sin” x dx = (-2

n/2
J sin”* x dx
0
o)

Generalizing from (1) and (2), two cases arise.
Case 1. When n is a + ve odd integer, then

n/2 .
j sin” x dx =
0

/2
_ n-Dn-3)...... 2 [ jn/z sin x dx = [— cos x] = 1}
3

nn-2)...... 0 0

*This step is being done on comparing the L.H.S. and R.H.S. of equation (1).
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Case I1. When n is a + ve even integer, then
n-Dn-3)...... 1 (mi2 n-Dn-3)...... 1
B j sin® x dx =

nn-2)......
/2 /2 n/2
{ jn sin® x dx = jn ldx = (xj = E:(
0 0 2

0

n/2 .
j sin” x dx =
0

2 (n - 1) X go on diminishing by 2
Note. J sin® xdx = T
o n x go on diminishing by 2

T
X only ifn is + ve even

integer (otherwise no EJ . Above formula is called Walli’s Formula.
2

TO EVALUATE | cos" x dx, WHERE N IS A POSITIVE
INTEGER GREATER THAN 1

Reproducing Art. 13, we have

cos"lxsinx n-1
j cos"xdx=—""—""+ j cos"? x dx
n-1 . /2
/2 cos" " x sin x n—1 /2
J cos™ x dx = [—} + J cos™? x dx
0 n 0 n 0
n-— 1 n/2
= J cos"? x dx LD
n Jo
n-1 . T
[ cos" " xsin x =0, when x = 5 or O}
) ) /2 n—-38 (/2
Changing n to n — 2, in (1) J cos" 2 x dx = J cos™* x dx.
0 n-2Jo
) ) ) ) /2 -1 -3 /2
Substituting this value in (1), J cos x dx = M cos"* x dx
0 nn-2) 0
o)
Generalizing from (1) and (2), two cases arise.
Case 1. When n is a + ve odd integer, then
/2 -D(n-3)...... 2 (m/2
J cos™ x dx = (n = Din—3) J cos' x dx
0 nn-2)...... 3 0
Dn-3).....2 /2 "
_(n— n=3).... J cosxdxz(sinx) =1
nn-2)... 3 0
Case I1. When n is a + ve even integer, then
/2 " de = n-Dn-3)...... 1 (w2 0 g g n-Dn-3)...... 1 g
-[0 oS XA = —-2) ... 2 .[ Cos XAy = -2) ... 2 )

0

/2 /2 n/2
{ jn cos’ x dx = jn ldx = (xj = E:(
0 0 2

(n - 1) X go on decreasing by 2
n X go on decreasing by 2
even integer. Above formula is also called Walli’s formula.

n/2 T
Note. -[0 cos" xdx = x only if n is a positive
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NOTES

Example. Fvaluate

-~ (V2 (/2
@) .[o sin® x dx, ) .[o cos? x dx.

/2
Sol. (i) J‘On sin® x dx = 5.3.1 .

n_95
6422 32"
n/2 8.6.4.2 128
) o
(”)-[o cos®x dv =93 = 315
EXERCISE 4.3

/2 n-1
1. IfC, = j cos™ x dx, show that C, = T C,_, where n is any positive integer
0

/2
Hence evaluate j cos™ x dx.

[Hint. It is Art 15.]

/2
Ifu, = -[0 0 sin” 6 d6 and n > 1, prove that u, = Up-2+—5.
149
Deduce that u, = 995

[Hint. [0 sin” 6 d0 = (0 sin"! 0) sin 6 d® and now apply product rule, taking 6 sin™1 8
as first function and sin 6 as second function]

/2 n-1 1
3 Ifln:jo x cos™ x dx, prove that In:_I”_Z_F'

REDUCTION FORMULAE FOR jsin" X cos9 x dx

| sin? x cos? x dx can be connected with any one of the following six integrals :
@) | sinP2 x cos? x dux (i7) | sin® x cos?2 x dx

(i0) [ sinP* 2 x cos? x dx (v) [ sin? x cos? *2 x dx

() [ sinP2 x cos?* 2 x dux

(vi) | sin? * 2 x cos? 2 x dx.

Thus in finding a reduction formula for | sin? x cos? x dx, we may

(1) Decrease or increase by 2 the index of sin «x, leaving that of cos x unchanged (i), (7i7).

(11) Decrease or increase by 2 the index of cos x, leaving that of sin x unchanged (i7), (v).
(ii1) Decrease the index of sin x by 2 and increase that of cos x by (2) (v).

(iv) Increase the index of sin x by 2 and decrease that of cos x by 2 (vi).

But we cannot increase or decrease by 2 the indices of both sin x and cos x in the
same formula.
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RULE FOR CONNECTING jsin" x cos9 x dx WITH ANY
ONE OF THE ABOVE SIX INTEGRALS

Step I. Take P =sin* ! x cos* *1 x where A is smaller of the two indices of sin x
and u is smaller of the two indices of cos x in the two integrals which are to be connected.

. P . . . .
Step II. Find (;ll— and express it as a linear function of the two integrands
X

whose integrals are being connected.

Step II1. Integrate both sides w.r.t. x, transpose and solve for the given integral.

CONNECT | sin® x cos? x dx WITH |[sin2 x cos? x dx

Hence integrate [ sin? x cos? x dx.
Sol. (@) Let P =sin?2*+1 x cos? ! x = sin” ! x cos?* ! x
Differentiating both sides w.r.t. x

dP

d—Z(p—l) sin”2x.cosx.cos?tlx+sin?! xx(g+ 1) cos? x (—sin x)
x

=@ —-1)sin?2xcos?*2x—(q+ 1) sin? x cos? x
=@ — 1) sin? 2 x cos? x cos?x* — (g + 1) sin? x cos? x
=@ —1)sin?2xcos?x. (1 —sin? x) — (g + 1) sin? x cos? x
=@ —-1)sin?2xcos?x— (p — 1) sin? x cos? x — (q + 1) sin® x cos? x
=@ —1)sin?2x cos?x — (p + q) sin? x cos? x
Integrating both sides w.r.t. x
P=@ -1 ]sin?2 xcos?x dx— (p + q) [ sin? x cos? x dx
or @+q) | sin? xcos?xdx=—P+ (p—1)[sinP2xcos? x dx
sin? ! x.cos?! x L P- 1
p+q ptq

j sin® x cos? x dx = — j sin?2 x cos?x dx ...(0)

which is the required reduction formula.
(b) To integrate [ sin* x cos? x dx, put p =4, ¢ = 2 in (i)

sin® x cos® x

+§ j sin? x cos? x dx
6 6

J sin* x cos? x dx = —
...@1)
Again, putting p =2, ¢ =2 1n (i)

s1n X COS x

j sin2 x cos? x dx = sin® x cos? x dx

s1nxcos x 1 1+ cos 2x
_ +o j dx

*[Note. Now we write cos?*? x as cos? x cos? x and replace cos? xby 1 —sin?x, -+ cos?*2xisnot

required while cos? x is required.]

Reduction Formulae

NOTES
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Calculus—I1 . 3 .
sinxcos®x 1 ( sin ZxJ
—_ 2=k = X+
4 2 '
Putting this value of | sin? x cos? x dx in (i1), we get
NOTES

sin® xcos® x  sinxcos®x 1 ( sin ZxJ
_ T T4 — X+

4 8 16 2

Alternative Form of Art. 18. Find the reduction formula for | sin? x cos? x dx
and hence evaluate | sin? x cos? x dx.

Example. Show that

j sin? x cos? x dx = —

1 1

xcos"tx n-1
+
m+n m+n
Sol. Let P=sin™ "1 x cos” 2t x =sin” *! x cos™ !
dP

— =(m+ 1) sin”x.cos x.cos"tx+sin” ! x (n—1) cos™ 2 x (—sin x)

dx

=@ + 1) sin” x cos” x — (n — 1) sin™ "2 x cos
=@ + 1) sin” x cos™ x — (. — 1) sin” x . sin? x cos
=@+ 1) sin” x cos” x —(n — 1) sin” x (1 — cos? x) cos" 2 x

=@+ 1) sin”xcos” x —(n — 1) sin™ x cos” 2 x + (n — 1) sin™ x cos” x
= (m + n) sin™ x cos” x — (n — 1) sin” x cos™ 2 x

sin™*

[ sin™ x cos™ x dx = j sin™ x cos™ 2 x dx.

X

n—2 x

n—2 x

n—2

Integrating both sides,
P=(@m+n)fsin™xcos” x dx — (n — 1) [ sin™ x cos™ 2 x dx

or (m+n)fsin®xcos"xde=P+ n—1)[sin™x cos™2 x dx
< m+l n-1
) sin™txcos"'x n-1 )
j sin™ x cos”™ x dx = + j sin™ x cos”™ 2 x dx
m+n m+n

which is the required reduction formula.

TO EVALUATE | sin® x cos® x dx, WHERE p AND q ARE
BOTH POSITIVE INTEGERS GREATER THAN 1

Reproducing Art. 18, we have

sin? ! x.cos? x L P- 1
p+q p+q

J sin? x cos? x dx = — J sin? 2 x cos? x dx

/2
LZE sin? 1 xcos? x| -1 vz |
J sin® x cos? x dx = — + P J sin? 2 x cos? x dx
0 ptq 0 pt+q Jo
-1 (n/2
= ]l:+q .[o sin?2 x cos? x dx LD
[ sin?™! x cos?™! x = 0, when x = g or 0}
Changing p top — 2
n/2 p- 3 n/2
.[o sin? 2 x cos? x dx = m . sin? 4 x cos? x dx
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Putting this value in (1),

(p-D(p-3) (n/2
(p+)p+qg-2) Jo
Generalising from (1) and (2),

/2
.[o sin® x cos? x dx = sin”* x cos? x dx ..(2)

Case I. When p is a + ve odd integer.

(p-D(p-3)...... 2
(p+@Xp+q-2)...... (g+3)

n/2 . n/2 .
J sin? x cos? x dx = J sin! x cos? x dx
0 0

..(3)
/2 /2
But J sin x cos? x dx =— J cos? x (—sin x) dx
0 0
cos?™ x " 1 1
-l - _ [0-1] =
g+1 o g+1 g+1
from (3),
ne B (p-D(p-3)...... 2
Jo s eost v dv= o T e T -
Now multiplying both numerator and denominator by
(-1 .(@—-3)....., we have
J'n/2 Gin? x cos? x d = (p-D(p-3)...... 2lllg-Dg-3)...... ]
0 ’ T (p+rpt+q-2)...... (@+3)g+Dl@g-D(@g-3)...... ‘
Case II. When p is a + ve even integer.
mz (p-D(p-3)....1 w2
sin? x cos? x dx = sin® x cos? x dx
-[0 (p+)p+q-2)...... (g+2)Jo
_ _ /2
= (p=D(p=3).... 1 J cos? x dx ..(5)
(p+q)(p+q-2)...... (g+2) Jo

Sub-case (i) When q is a + ve odd integer.

n/2
= q =
Io, . .[o cos? x dx

from (5),

(p-D(p-3)...... 1 (@-Dig-3)...... 2
(p+q)Xp+q-2)...... g+2) qlg-2)...... 3
Sub-case (i) When q is a + ve even integer.

n/2 .
Jo sin? x cos? x dx =

/2
j cos? x dx =
0
from (5),

/2 -1 -3)...... 1 = -
J'O GNP 1 cos? 1 d = (p—-D(p-3) (@-1D(@-3)...... 1.

T
P+YPp+q—2) ... (@+2) " ¢lg-2)......2 9

n/2
Note. J sinP x cos9 x dx
0

_ [(p-1) x go on diminishing by 2] x [(q - 1) x go on diminishing by 2] < E
a (p + q) X go on diminishing by 2 2

only if both p and q are + ve even integers (otherwise no %) .

Reduction Formulae

NOTES
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/2

Example 1. (i) Evaluate J sin? x cos® x dx

Y
0
. n/2 .
) j siné x cos? x dx
0

e T[/2 .
(Ti1) .[o sin® x cos* x dx

. n/2 )
@v) .[o cos’ 0 sin0 do.

/2
Sol. (i) jo sin* x cos? x dx [Here p =4, g = 2 are both even, p + q = 6]

3x1.1 JE_m
 6x4x2 2 32°

(M2 7.5.3.1x3.1 =m n
@ |, st costw Ay = o S 6 4.2 2 2048
(1i1) J‘n/z sin?xcos%cdxzﬂ (Herep=5,g=4andp+qg=5+4=9)
0 9.7.5.3.1 ’
8
" 315

. /2 .
@v) .[o cos’ 0 sin 0 dO

Here p=1.
Formula of Art. 19 is not applicable.

n/

/2 2
.[o cos” 0 sin 0 dO = — .[o (cos B)7 (—sin 0 dO)

(cos0)° " ) (FO)"!
= [TL ‘ S @y e do=="—
= -1 {(cos EJS —(cos 0)8:( = -1 O-1-= 1
8 2 8 8
Example 2. Evaluate J‘OI x% sin~! x dx.
Sol. Put sintx=0
x=sIn 0
. dx = cos 6 dO
To change the limits
Whenx=0,sin06=0 .. 06=0
Whenx=1,sin06=1 .. ng
1 /2
- -[0 Msintxdx= jo sin® q . q. cos q dq
= J‘On/z 0. sin® 0 cos 0 do (Product Rule)

n/2 /2
_ ;6 _ hadl 16
_ (e JO sin® 6 cos 0 dO J'O 5 © _[ sin® 0 cos 0 d do

.7 n/2
(9 sin GJ _J-n/z sin’ 6 d6
7 0 0 7



(See Example 1 (fv) above)
1

n 6.4.2 =n 16
27

"7.5.3 14 245"

ENR S

Example 8. Prove that [ sin x dx = ——-— T
xample 3. Prove that .[o s x 'x_(2”(n).’)2 5

Sol. We know by Art. 14 that
2n-1D2n-3)...... 1 =m
2n(2n-2)...... 2 2

Multiplying both numerator and denominator by denominator i.e., by
2n(2n —2) ... 2,

/2 .
j sin?” x dx =
0

~ 2n@2n-1)(2n-2)2n-3)...... 2.1 =
- [2n2n - 2)......2]% 2
B 2n! T
T 2.n.2-1....2.1% 2

2n! 2n! i

T
2" nn-1....12 2 @ " m)? 2~

Example 4. Prove that

2 @n+1)@n-1)....3.1
n 2 _ 2d — n+2
.[ NN A Mt Dn.... 2.1

0

where n is a natural number.

Sol. LH.S. = J‘Oza x" \2ax —x2dx= J‘Oza x" \Jx(2a —x) dx
:joz“xnﬁmdx ()

Put x = 2a sin? 0
dx =2a . 2 sin 0 cos 0 dO
= 4qa sin 0 cos 0 dO

To change the limits

when x=0,2asin?20=0. But2a¢z0 .. sin6=0
06=0

when x=2a, 2a sin? 0 =2a or sin26=1=sinzg
g==
=5

Putting these values in (1),

/2 . 2 . 92 . 9 .
L‘H‘S‘:J0 (2a sin” 6) \/2as1n 6\/2a—2asm 0 . 4a sin 6 cos 6 dO

/2
= J (2a)" sin?* 0.+/2a sin 0.+/2a(1 —sin? 0) 4a sin 0 cos 0 dO
0

/2
= J (2a)" sin?" 8 +/2a sin 0 v2a cos0.4a sin 0 cos 0 dO
0

Self-Instructional Material
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/2
= (2a)" V2a v2a 4a J‘On sin?*2 0 cos? 6. dO

Qn+1D@2n-1...... 3.1.1 n
2n+4)2n+2)2n...... 2 2
Cn+1)2n-1...... 3.1

- 2n+2 ) an+2 T
2n+2)2(n+1...... 2.n...... 2.1
@n+1D@2n-1...... 3.17t
2"2(n+2)(n+1.n.1
,@n+D@n-1..... 3.1

n+2)(n+D.n...... 1

= Q2a)" . 2. 2a

— 2n+2 an+

— Tcan

EXERCISE 4.4
/2 /2 6371
1. Prove that J sin'0 x dx = J cosVxdx=——.
0 0 512
1
2. Prove that (1) J sin® x cos® x dx = 50
ilis /2 1
.. oy s _ g _ =
@) J:) sin? 0 cos® 6 db 2048 @) J:) sin? 6 cos 0 dO 10
. .5 6 8
@iv) j sin® x cos® x dx = ——.
0 693
T x x 5m
L6 82 g
3. Prove that -[0 sin® o cos® dx TR

{Hint. Put % = t.:'

a 4
4. Prove that (1) j 4 a2 — &2 =— (i) J x dx = 3a’n ‘
0 Ja? - x2 16

[Hint. Put x = a sin 6.]
2a
5. (i) Eval tj x2 \2ax — x? dx [Hint. put x=2a sin2 0
(@) Evaluate o X ax —x° dx [Hint. put x = 2a sin® 0]

2
(11) Evaluate j X512 J2 — x dx
0

(iit) Prove thatj o ydx — x2 dx=28n

2a 63na®
(iv) Prove that J:) 2 Q2a —x)"2 dx = ga
6. (1) Evaluate j d—xz .
0 (1+x°)"

(23} J \/— dx and hence find the sum of the series

1 1

1 L1031
2 4 2n

+5

+ 0 oo,
n+l 2 21+3 2 4 2m+5 to



1
{ Hint. j x2n (1 — x2)~12 dx
0

1
1 o 1 3 4
— n 1+ = +—=.— +o oo | ds
.[0” { 2® "o " } )

1
:j 22+ = 1 £ 4 = 1 .§x2n+4 + o oo | dx
0 2 2 4

3 x2n+1 . 1 x2n+3 . 1 3 x2n+5
“|l2n+1 2 2n+8 24 2n+5 7

S A N O S
h ' 24'2n+5 """ '

1+ x
7. Evaluate J

Hint. Put x2 = cos 0.]
[

1
8. Evaluate j 20 sin~! x dx.
0
/2
9. If L .= j sin? x cos? x dx, prove that
’ 0

_ (-1 (p-3)(p-5)...... 2.1
Pa (p+rq) (p+qg-2)(p+q-4)...... (g+3)(g+1

where p is an odd positive integer and q is a positive integer, even or odd.

[Hint. Reproduce Art. 19 upto Eqn. (4).]

Answers
5. () % at ) %
6. () @2n-3)2n-5)..... 3.1 n (i) @2n-12n-3)..... 3.1 T
2n-2)2n-4)....4.2 2 2" .n! 2
3n+8 11w
7. 8. —— .
24 192

Reduction Formulae

NOTES

REDUCTION FORMULA FOR [ x™ (a + bx")P dx

[ x™ (@ + bx")? dx can be connected with any one of the following six integrals :

@) | x™ (@ + bxMP~ dx @) [ xm™ (@ + bx"yP dx
@) [ x™ (@ + bx™)P * 1 dx @v) [ xm (@ + bx"yP dx
@) [ xm 7 (@ + b dx i) | xm (@ + bx™P * 1 dx.

Thus the index m of the monomial x™ can only be increased or decreased by the
index n of ¥ in the binomial a + bx™ and the index p of the binomial a + bx" can be
increased or decreased by one only. The indices of binomial a + bx™ and the monomial

x™ cannot both be decreased or increased in the same formula.
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Calculus-I1 Example 1. Connect [ x™ (a + bx")P dx with | x™ (a + bx")P~ d.
Sol. Let P=am*1(a+ bx"P 1%l =x""(q+ bx")?
dP

T m+1Dxm(@+bx)+am+l  p @+ byt bna!

=(m+ 1) x" (@ + bx™? + pn bx™ " (a + bx")P1
=(m + 1) & (@ + ba™P + pnx™ . bx™(a + bx")P1

NOTES

=(m+ 1) x" (@ + bx™P + pnx™ . (a + b * — a) (a + bx™r!
=(m + 1) & (@ + ba™P + pnx™ (a + bx")? — pnax™ (a + bx")?~1
=(m+ 1+ pn)x™ (a+ bx"? — pnax™ (a + bx™)?1.
Integrating both sides,
P=@m+1+pn)|xm (a+bx"? dx—pnalx™ (@+ bx")P dx
(m + 1+ pn) | x™(@ +bx™)? dx =P + pna [ x™ (@ + bx")?~! dx
™ (@ + ba™)P pna
m+1+ pn m+1+ pn
which is the required reduction formula.

j X" (a+ ba"P dx = x _[ X" (a + bx"Pt dx

Example 2. Prove that

J‘ dx B X N 2n-3) dx
@ +x?)"  2%m-D@®+x2)"1  2°m-1J @ +x?)v1
d
Sol. Let us connect j m = J 20 (@2 + 2 dx
: dx | A0 (2 1 a2y nt1

with J‘W—J‘x(a + x?%) dx.

Let P=x"*1(@*+x? %! | “Smaller Index + 1” Method

x
P=x(a?+sd)n+1=

or x (a® + &%) (@ + x2)" 1

Diff. both sides w.r.t. x,

le—f: =@+ ™M +x(n+1) (@ +xH". 2
1 2
Tyt T Ay
- @+ iZ)n—l +2(1—n) _[(a:a; izx)z_)naZ]
dp 1 2(1-n) 2a% (1-n)

or i — + — —
dx (a2 +x2)n 1 (a2 +x2)n 1 (a2 +x2)n

3-2n 2a” (1-n)
(aZ +x2)n—1 (a2 +x2)n

*[Note. Now x™ "™ is not required .. we write bx™ " =x™ . x" . b.
X" is also not required but powers of @ + bx" are required.

~. We write bx™ * "= x™ . bx" = x™ (a + bx" — a)].
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Integrating both sides w.r.t. x, we have Reduction Formulae

=B -2n —————dx—2a> (1 —n ———— dx
’)'[ 2)n1 ( ’)'[ (a? +x)
Transposing, NOTES
2a® (1 —n) —n dc=—P+@B-2n) | —————
J 2) J‘ (a +x )n 1
Putting the value of P and dividing both sides by 2a? (1 — n)
1 x @2n - 3) 1
———— dx=— - - = dx
j (@® + x%)" 2¢2 1-n)@®+x>)" 1 2d%(1-n) j (a® +x2)" 1
x 2n-3) 1
= + - = _dx
2a% (n - D? + )" 22 (n-1) -[ (@® + x> ! v

x" dx

W and find the value of
x° —

Example 3. Obtain a reduction formula for j

J‘ B6? — 1)1 dx
Sol. Let us connect the given integral
J x"(x3 =173 gy with the integral Jx”_s (x3 -1 Y3 dx

[Note. In the second integral we have taken x" 2 because of the presence of x* in the

bracket]

Let P=am% (x3 - 1)_§+1 | “smaller index +1” method
or P=x2(x® —1)%3
Diff. both sides w.r.t x, we have
(;—Pz X" .%(x3 D73 3x% + (n—-2)x" (x® - 1?3
x
dP ne.3 ~1/3 n-3,.3 3 2/3-1
or a:z_x (x°-1) +(n—-2)x (x° -1 (x° -1) (Note)
or %:2xn(x3_1)—1/3+(n_2)(xn_xn—S)(xS_l)—l/S
dpP n ~1/3 ng.3 ~1/3 n-3,.3 ~1/3
or . =2x"(x% -1) +(n-2)x"(x° =-1) —(n-=2)x""(x° =-1)
x

=@2+n-2 &1V _ 2y 3 (x3 —1)" V3

Integrating both sides w.r.t. x, we have
P= n/J‘ "3 -1)"dx —(n - 2)_[ 23 (3 -1 V3 dx
nf & -0 de=Pr(n-2) [ 2P - DV d

Putting the value of P and dividing both sides by n,

n-2 (x3 _ 1)2/3

j " (31 Vi dx= X + (n-2) j B - V3dx (D)
n

n

which is the required reduction formula.
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To evalu,atej xS (x5 =113 dx

xG(xS _ 1)2/3

6 _
Putting n = 8 in (1), j x8(x% -1 Vdx = + §Jx5(x3 —-1) B dx

8
(2
3 3 2/3
Putting n =5 in (1), '[ x2(x% 1) V3 dx :M+§J‘x2(x3 1) Y8 gy
5 5
e
Now j x2(x% -1 V3 g =§J‘(x3 —1) V3 (3x2) dx
3 2/3
:%(x —21) ce
3
n+l
[ [t rw PCAC)) S S
n+1

1 3 2/3
=—(x" -1 +c
2 ( )
Putting this value in eqn. (3), we have

3/..3 2/3
J. x5(x3 — 1)_1/3 dx :M_i_i

3 2/3
-7 + ¢
5 10 (x ) c

6,3 2/3 3.3 2/3
ij(xS—l)_l/de:x (x°-1) +§[x (x°=1) 3

+— (3 - [+C
8 4 5 10

1 6,3 23 . 3 3.3 23, 9 3 2/3
- -1 + — -1 + — -1 +
=—x (x ) 20 x° (x ) 0 (x ) C

8
6 3
(g3 oy x 8% 9
=" -1 [8 20 +4o}+c‘
EXERCISE 4.5

Connect [ x™ (a + bx")P dx with [x™* " (@ + ba")P dx.

If n is a positive integer, prove that

2)11,/2 2

x(a® + x na

J. (@ + 222 dx = +
n+1

-1, 2 213/2
[ 2 2 —x"Ha® - x*) n-1
IfIn:jxn a” —x° dx, show that L= 1o +[n+2]a21n—2»
IfIanx",/a—x dx, prove that

a
— _ 32 2 | 2
@n+3)1, =2anl ,-2x" (a—x)”"” and hence evaluate -[0 X% Jax — x2 dx.
2

J. (a2 + x2)n/2—1 dx.
n+1

2na
2n+1 ™V

a
If I denotes J (a? — xH)" dx and n > 0, prove that I =
0

a
Hence evaluate J (a® — x2)? dx.
0



1
If1 = j x™ (1 —x)™ dx, prove that (m +n+ 1) 1
0

=nl
m, n m,

m, n n—1"

1
Deduce the value of j x* (1 —x)3 dx.
0

If m is a positive integer, find a reduction formula for J. " J2ax — x2 dux.

2a
H find th 1 f'[ X _ 22 dx.
ence find the value of | =« J2ax — x% dx
1
m+=
[Hint. x™ 1/2ax—x2 =" x/;,IZa —x=x 2 ,IZa—x.:l
Answers

@ +bx™PY bpn+n+m+1)
(m+ Da B (m+ Da

J. x™ (@ + bx")P dx = xmt (@ + bx™yP dx.

5ma* 5 16a’ 1
128 " 35 " 280

(2ax — x2)%? @2m+1) 7
m 2 — _ 4m—1 m—1 2 C— 5
7. J.x \2ax — x2 dx X —— ta— 2L 9ax — x dx,sna.

Reduction Formulae

NOTES
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NOTES

5. RECTIFICATION

STRUCTURE

Rectification

Length of the Curve When its Cartesian Equation is given
Method to Find the Length of an Arc of a Cartesian Curve
Length of the Curve when Parametric Equations are Given
Length of the Polar Curves

To Prove that the Length of the Arc of the Curve p = f(r) between the Points
Wherer=a,r=">1is

Intrinsic Equation of a Curve

To Find the Intrinsic Equation of a Curve from the Cartesian Equation

To Find the Intrinsic Equation of the Curve from the Parametric Equations
To Find the Intrinsic Equation of the Curve from Polar Equation

To Find the Intrinsic Equation of the Curve from the Pedal Equation

RECTIFICATION

Definition. The process of finding the length of an arc of a curve between two
given points on it is called rectification.

LENGTH OF THE CURVE WHEN ITS CARTESIAN
EQUATION IS GIVEN

Prove that the length of the arc of the curve YA
y = £(x), between the two points whose abscissae are

a and b is given by
A S
b dy 2
-[a \ 1+ (E) dx

where y and dy/dx are continuous and single-valued
functions in the interval [a, b] and the integrand does
not change sign in this interuval.
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Let AB be the curve y = f(x) and A, B are the points whose abscissae are a and b
respectively and CA, DB are their ordinates.

Let P(x, y) be any point on the curve and draw MP 1 x-axis.

If s denotes the length of the arc AP measured from the fixed point A to the
variable point P, then s is clearly a function of x.

From Differential Calculus, we know that

ds dy 2
% 4| &
o +(de (1)

b 2 b b
j 1+(ﬂ) dxzj ﬁdxz s
a dx a dx “
= (value of s at x = b) — (value of s at x = a)
=arc AB — 0 = arc AB.

b ’ 2
Hence arc AB = '[ 1+ (%) dx.
a X

2
Remark. It must be noted that in fact, ﬁ =+ [1+ (ﬂJ
dx dx

We take the + ve sign with the radical under the assumption that sincreases with x. The
sign is — ve if s decreases with the increase of x.

If % or the integrand changes sign at some value ¢ within the range of
X
integration [a, b], then the definite integral from a to b must be broken into the sum

of two definite integrals, one from a to ¢ and other from ¢ to b and the +ve value
of the integrand taken in each. Otherwise, the result will be the difference of the
lengths of two arcs.

2
Cor. 1. From (1), we have s = j 1+(%) dx.
V X

Cor. 2. If the equation of the curve is of the form x = f(y), then the length of the
arc between the points whose ordinates are ¢ and d is

2
d
J Jl + (EJ dy.
c dy
d dx
[Hint. Proceed as in Art. 2 and instead of (1) use d_s =1+ [_x] A

y dy

Caution. To find the length of an arc of a cartesian curve, we must express either y as
an explicit function of x or x as an explicit function of y.

2
Secondly, if we use the formula, s = J " 1+ (j—yJ dx, then % must be a function
X X

of x alone.

2
If we use the formula s = j ‘,1 + (%J dy, then % must be a function of y alone.
y Y
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Calculus—II

METHOD TO FIND THE LENGTH OF AN ARC OF A
CARTESIAN CURVE

NOTES Step I. To find Limits of Integration. If the end points of the arc (whose
length we are to find) are given ; then we know the limits of integration.

In such problems we need not trace the curve. Otherwise, trace the curve roughly
to know the limits of integration. (While tracing the curve here, Symmetry of the
curve and its points of Intersection with the axes are the two main points which
should be discussed).

Step II. Express y as an explicit function of x or x as an explicit function of y.

Step III. Flnd or dx

Step IV. Use the formula, s—j ‘f1+ dx or j "1+ dx

Example 1. Show that in the catenary y =c cosh x/c, the length of the arc from
the vertex (0, c¢) to any point (x, y) is given by (1) s =c sinh x/c and (ii) s =y — ¢

Sol. The equation of the curve is y = ¢ cosh X
Cc

d; . x 1 .
A ¢ sinh =.= =sinh 2.
dx cc c

@) .. Reqd. length of arc fromx=0tox=xis

s—'[ 1’1+ dx J ‘[1+smh —dx

= j cosh — dx =c [smh ] (smh = - 0) —csinh 2.
0 clo

c c

2
(i1) Now s2 = ¢ sinh? = = ¢2 [cosh2 %— 1} =c? {(ZJ - :( =y? —¢?
c c

which proves the required result.
Example 2. Find the length of arc of the parabola y? = 4ax
@) from the vertex to an extremily of the latus rectum.
@) cut off by the latus rectum.

Sol. The equation of the parabola is y? = 4ax (D)
. e dy dx y
Diff tiating, 2y — = 4a — =
erentiating, 2y I a & 2a

Let O be the vertex and L be an extremity of Y4
latus rectum (a line through the focus and L to axis).

Extremities of latus rectum of the parabola

y% = 4ax are (a, 2a) and (a, — 2a). Lm—
At O, we have y =0 and at L, we have y = 2a. / ’
(@) .. Length of arc OL
O »
5 ©, 0)\\ S X
2a dx
= 1+ —| d ,
! (dyJ ! L2
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2a 2
— y
= 1/1+—d
jO 4q? Y
2
:iJ‘ ‘ Vy? +4a® dy
2a Jo
2a
= %[%y Vy% +4a® +2a%.sinh ! %]
0

a
[2 . 2 2
+
[ '[ JxZ+a? dx:¥+% sinh! E]
a

= Zi [a V8a® +2a* sinh™ 1- O] =a[v2 +sinh™ 1]
a

V2 +1log (1+ 1+ 1)] [ sinh ™! x = log (x + /2% + 1)]
=a [\/§+log(1+ J2)1.

(1) Length of arc L’OL cut off by the latus rectum = 2 times arc OL = 2a

[V2 +log (1++/2)]
Note 1. J‘wla -x dx——“a_X a?sin 5

a

2. J‘wlx —aZdx=2V" % “x -a* cosh_
a’
[2 _2 2
3j a2 +xldx— V@ tX A LhlX

2 2 a’
Example 3. Show that the length of an arc of the curve x2 =a? (1 —e>’*) measured

+ X

from (0, 0) to (x, y)is a log a4 —x.
a

-x
Sol. The given curve is x% = a?(1 — e>’/%).
Let us solve for y in terms of x.

2=a?2—-a?e¥® or afeYe=q%2—x2 . eYo=

2 .2 2 2
lzlog[a 2x Joryzaloga 2x
a a

a

b, o ()
dx “a?-x?\ a? a? - x?

Required length of the arc from (0, 0) to (x, y) is

J 1’1+ dx J 4a jz 2 dx

Cr [(@® - x?)? +4a’x? = a® +x* d
= 2 2.2 X = 2 2 4%
0 (a®—x7) 0 a“—x
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NOTES

-1
—x2+azix2+a2
2 2

X —Qa

2a”
N g 1 a+x] o J‘ 1 d =i1 a+x
_[ x+2a '%loga—x 0 . a? - x2 *~ 2a oga—x
+ +
Z(—x+aloga x)—(—0+alog1):aloga Y ox [+ log 1=0]
a—-x a—-x
1 1 xX—-a
Note.'[—dx:—]o .
x2 a2 2a ®x1a

Example 4. Show that the whole length of the curve x2 (a® — x%) = 8a® y? is
na V2.
Sol. Equation of the curve is 8a? y% = x%(a? — x?) (D
Let us trace the curve roughly to find the limits of integration.
() The curve is symmetrical about both the axes.
('~ There are only even powers of both x and y)
(1) The curve passes through the origin and the tangents at the origin are given

1
by a®x? =8a?y* ory = % m x showing that origin is a node.

(it) The curve has no asymptotes.
(tv) To find points of intersection with the x-axis i.e. with the line y = 0 [Putting
y=01in (1)], we have 2 (@*—x)=0orx=0, * a.
Hence the curve meets the x-axis at (0, 0), (a, 0) and (—a, 0).
The curve meets the y-axis at the origin only.

1 2 2
y= xqa® -x ..(2)
V8a?

For y tobe real, a2 —x2>0 i.e x2<da2

(v) Region

From (1),

—a<x<a.
Thus, the whole curve lies between the lines x =— ¢ and x = a.
The shape of the curve is as shown in the figure. The curve consists of two

symmetrical loops.
xa® - x*

From (1),

1
y =
V8a?

’
N
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Required whole length of the curve = 4 (Arc OA)

_4_[ /1+ dx = 4_[\/ > (azx;)dx

4 J‘“ 8a* —8a%x? + a* + 4x* — 4a%x?
8a?(a’® - x?)
4 a [9a* - 12a%x?% + 4x* 4 a 3q% - 2x2
= J‘ 3 2 dx: J‘ dx
V8a2 70 a”—-x 2a+2 Y0 \/az—x2
J‘a 2(a? - x?)+a?

az—xz

V2 "a ) 2 a
a

2 2 2
V2 a” —x a® . 41X .1 X
=X x X = 4= sin 2 |+a?sint=
a 2 2 a a

= Q |:x 1/a2 —x2 +2a%sin! i]
a

dx

dx (Note this step)

a

a

=£[2a2sin*11] { 2a2 . ——naf
a

Note. It is a common mistake not to take into account the symmetry of the curve. So the

0

student is suggested to make use of the symmetry of the curve while writing limit of integration.

EXERCISE 5.1

1. Find the length of the arc of the curve y =log sec x from x =0 to x = g

x

2. Find the length of the arc of the curve y = log ex -1 fromx=1tox=2.

e’ +1
e +1 e¥ +e™
{ Hint. J dx = J P dx (Multiplying every term by e™)
"(x)
=log (e*—e™) . ( ];(x) dx = log f(X)J]

3. (i) Find the length of the curve 3ay? = 2x° between the points (0, 0) and (x, y).
(i1) Find the length of the curve ay® = x® from the vertex to the point (a, a).
[Hint. Vertex is (0, 0)].

4. Find the length of the arc of the parabola x* = 4ay :

(@) from the vertex to an extremity of the latus rectum.
(i1) cut off by latus rectum.

5. (i) Find the arc length of the curve
1 1
y=y xz—z log x from x =1 to x = 2.

(1) Find the length of the arc of the curve y = x (2 — x) as x varies from 0 to 2.

Self-Instructional Material
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Calculus—IT 6. (i) Find the perimeter of the loop of the curve 9ay? = (x — 2a) (x — 5a)>.

min, [ e [

NOTES (i1) Find the perimeter of the loop of the curve 9y* = x* — 12x2 + 45x — 50.

[Hint. x® — 12x% + 45x — 50
=% - 2x% — 10x% + 20x + 25 x — 50
=2 (x—2)-10x(x—2)+25 (x—2) = (x—2) (x2—10 x + 25)
=(x—2) (x—5)2
Now it is part (1) with @ =1].
7. Find the whole length of the loop of the curve 3ay? = x(x — a).
Rectify the loop of the curve 3ay? = x*(a — x).
9. Find the whole length of the loop of the curve 3ax? = y? (a —y).
10. Find the whole length of the loop of the curve 3ax? = y(y — a)>.
11. Find the length of the arc of the curve x? + y2 — 2ax = 0 in first quadrant.

Answers
1. log (2+4/3) 2. log (e +e™)
4a 3x 3/2 o a
3. (i) ?[(H?“) - } (i) 2—7[13«/ﬁ—8]
4. () a V2 +log (W2 + D] (i1) 2a [V2 +log (W2 + 1)
5. (L)%+%log2 (ii)%log(2+£)+£
.. 4a 4a

6. (i) 443a (i) 443 7. el 8. Ve

4a 4a
9. — 10. — 11. na.

ﬁ ﬁ a

LENGTH OF THE CURVE WHEN PARAMETRIC
EQUATIONS ARE GIVEN

To prove that the length of the arc of the curve x = f(t), y = ¢(t) between the points
wheret =t,tot =t,1s given by

2 2
R EREIR
ty dt dt

where x and y are continuous and single-valued Y4
functions of t, in the given interval [t t,]. B
Let AB be the curve x = f(f), y = 0(t) where A, B

are two points where t =¢, and t = ¢, and let CA and A s P
DB be their ordinates.

Let P (x, ¥) be any point on the curve and PM
be its ordinate.
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If s is the length of the arc from the fixed point A to the variable point P, then
clearly s is a function of ¢.

From Differential Calculus, we know that
£- [T
dt dt dt

t.
ts 2
4, dt ‘)

= (value of s when ¢ = t,) — (value of s when t =1¢,)
=arc AB — 0 = arc AB.

Hence arc AB =

Note. Here again it is assumed that the integrand does not change sign in the range of
integration [f,, t,].

2
Cor. From (1), s= (@j +(dyj dt.
dt dt

Example 1. Find the length of the curve
x=e’ (sin9+2cosg) y=e" (cosg—2sin9)
2 2 2 2

measured from 6 =0 to 6 = m.
Sol. The given curve is

x=e’ (sin9+2cos9), y=e’ (COSQ—ZSingJ
2 2 2 2

1
2

0

-l
-t

of . © 0 5 0
cos —s1n +e |siIn—+2cos—|=—¢€ CosS—
2 2 2 2

and 1 1n——cose)Jree(cosg—Zsing)Z—Eeesin9
2 2 2 2 2 2
(@) +(dy) 25 e?0 (cos 0 +sin29J:§ e (D
do do 4 2 4
2 2 -
Required Length = '[0” (%J +(%} do = | e do | Using (1)

5[ o] 5
—2{e:|0—2[e 1].

Example 2. Reclify the curve x =a (0 +sin 0), y =a (1 +cos 0).
Sol. The equations of the cycloid are x = a(0 + sin 0), y = a(1 + cos 0) (D)

We trace this cycloid for values of 6 in [~ 7, 7] Y4
to get one arch of the cycloid.

This curve is symmetrical about y-axis.

(v On changing 6 to — 6, x changes
to — x and y is unchanged)

B
0

»
»
=T X
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Calculus—I1 The shape of the complete cycloid is being shown below :
dx dy _

From (1), oy =a (1+cos 6) and 28 a sin 6
2 2
NOTES (@) + (ﬂ) =a? (1+cos0)2+a?sin?0
do do

=a?[1+ cos?0+ 2cos 0+ sin? 0]
= 2a? (1 + cos 0) = 4a? cos? g (2
Length of the curve (i.e. length of one arch of cycloid or complete cycloid).

dx \? dy 2 o (" / 2 2 0
(%J +(%) do _2J0 4a” cos Ede | From (2)

sin —

T . T .
:2'[ 2acosgd6:4a = 8a|sin —-sin 0 |=8a.
0 2 1 2
2 o
Note. We have taken 1&4(12 cos? 6/2 =2a cos 0/2 and not — 2a cos 0/2 as cos 6/2 remains
positive when 6 increases 0 to 7.

Example 3. Rectify the ellipse x =a cos © and y =b sin 0.
x? P
or (F ind the whole length of the ellipse — + W = IJ.
a

2

2
Sol. The ellipse x=a cos 0, y =0 sin 0, (x_z + z—z = 1] is symmetrical about both
a

the axes. Ya

) dx ) dy
Diff. w.r.t. 0, 20 =—asin 0 and 26 =bcos O

Perimeter of the ellipse
=4 (Arc AB)

N
N

/2
= 4J \/a2 sin? 0 +a®(1-e?) cos® 6 dO
0

n/2
= 4J \/a2 sin? 0+ b2 cos? 0 do
0

[ For an ellipse b? = a? (1 — e?), where e is the eccentricity of the ellipse]

n/2
= 4aj \/(sin2 0+ cosZ 0) — e2cos? 0 dO
0

n/2
= 4aj (1-e2cos? 0)V2 do
0
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1 ( 1 _ 1) Rectification

n/2
= 4q J 1+ 1 (- ecos? 0) + 2 (- e2cos? 0)2

0 2 2!
NOTES

(1929
212 2 (—e%cos?0)® +... |do

+
3!

nn-1 o nh-Dn-2) 4 }
X~ + X +......
2! 3!

[ By Binomial Theorem, (1+ x)" =1+ nx +

n/2
:4a'[ 1—1e2 cosze—ie4 cos? 0 - 13 e®cos®0-.../do
0 2 2.4 6
n/2 n/2 n/2
:4a[j 1d9—%e2J. coszede—ie“j cos* 6 do
0

0 0 24
n/2
13 b Jo cosGGdG—...]

2486

1 4 81n 1.3
24 '4.22 2.4.6

EXERCISE 5.2

1. Find the length of the arc of the curve x =¢% sin 0, y = ¢® cos 6 from 6 =0 to be 6 = g

2. Find the length of the complete cycloid given by
x=a®+sin 0), y=a( —cos0).
[Hint. For values of 8 in [~ 1, ], we get the complete cycloid. Length of complete cycloid is

2
— | dé.

3. (i) Find the length of one arch of the cycloid x = a (6 — sin 0), y = a(1 — cos 0).

(i1) and show that 6 = ?TI: divides it in the ratio 1 : 3.

[Hint. For values of 8 in [0, 2r], we get the complete cycloid.

Tl dx dy 2
Length of complete cycloid is 2 j (—) + (—) de.
0o \|\do do

(n — 1) x go on decreasing by 2

/2
* .[0 cos” 0d0 = X (E if n is an even positive integer)

n x go on decreasing by 2
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10.

Rectify the cycloid x=a (6 —sin ), y = a (1 + cos 0).
[Hint. Same as for question 3.]
Show that the entire length of the astroid x=a cos®t, y =a sin?® {

(or x2/3 + y2I3 = 23 or (x/a)?*? + (y/a)?* = 1) is 6a.
/2
Hint. Entire Length =4 j
0

Find the length of the arc in the first quadrant of the curve

x 2/3 2/3
(—) + (%) =lor(x=acos®t, y=>bsin?1i).
a

[Hint. Length of arc in first quadrant

dy \? Mz 2 2 2 .2
+ a dt:j 3s1ntc0st\/a cos“ ¢t +b” sin” ¢t dt.
0
[Put a® cos? t + b2 sin® t = z]
Prove that the loop of the curve x =12, y =1 — %t3 is of length 143
[Hint. Trace this curve. Limits of integration are 0 to 3. The curve is symmetrical about
x-axis.|
Prove that in the cycloid x=a (6 + sin 0), y =a (1 — cos 0) ; the length of the arc from the
vertex to the point (x, y) is ,/8ay . Hence find the whole length of the curve.
(1) Find the length of the arc of the curve.
x=a(ost+tsint),y=a(sint—tcosl) fromt=0tot=2.
(i1) A curve is given by the equation x = a (cos 6 + 0 sin 0), y = a (sin 6 — 0 cos 0).
Find the length of the arc from 6 =0 to 6 = .
Show that the length of an arc of the curve x sin © +y cos 6 =f"(0), x cos 6 —y sin 6 = " (6)
is given by s =f(0) + f”(0) + c.

[Hint. Solving the two equations for x and y, we have x=f’(0) sin 6 + f”(0) cos 0, y =f"(0)
cos 6 — f”(0) sin 0.]

Answers
J2 (@2 -1) 2. 8a 3. 8a 4. 8a
2 2 2
@ +ab+b” 8. 8a 9. (i) 2a (i) 2%
a+b 2

Remark. For the sake of convenience of the readers, we are giving below the shapes of
the curves in questions 2, 3, 4, 5, 6, 7.

0 6=0 0=2n ;
x=a (0 +sin 0) x=a (6 —sin 0)
y=a (1 —cos 0) y=a (1 —cos 0)



4. 5 YA
B|(0, a)
X c/ A
(-a, (N (a, 0) X
D(0,-a)
Y!
x=a (6 —sin 0)
y=a (1+ cos 0)
6. Y4 7. s

B|0 =n/2

LENGTH OF THE POLAR CURVES

To prove that the length of the arc of the curve r = f(0) between points whose
vectorial angles are o. and B, is

B 2 dr 2
J‘a r +(£J do

dr . : : .
where ) s continuous and single valued in [a, B].

Let AB be the curve r = f(6) and A, B the points where 6 = o and 6 = f3.

Let P(r, 6) be any point on the curve and let s B
denotes the length of arc AP which is clearly a function
of 6. P
From Differential Calculus, we know that A N
2
ds r +(drj (1) 7la
o %

j‘/ dr do = jﬁﬁ do = H

= [Value of s when 6 = 8] — [Value of s when 6 = a] = arc AB - 0.

B dr)?
arc AB = j r?+ (—j de.
o do
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Calculus—IT dr )2
Cor. 1. From (1), s = j r2 + (_rj de.
do

Cor. 2. When the equation of the curve is of the form 0 = f(r), the length of the arc
NOTES between the two points whose radii vectors arer, and r, is

r 2
jz ‘/1+r2 (ﬁj dr.
ry dr

do . . . )
where o is continuous and single-valued in [r,, 1,].
r

2
Proceed as in Art. 4, above and use ? = [1+r2 (?j instead of (1).
r r

Example 1. Find the entire length of the cardiotd r =a (1 + cos 0), and show that
the arc of the upper half is bisected by 6 = m/3.

Sol. The equation of the curve is r = a(1 + cos 0).

(D)

The shape of the cardioid is as shown in the
adjoining figure. It is symmetrical about the initial line
and the upper half of the curve is traced when 0 varies
from O to 7.

dr .
From (1), a0 =—asnH

Length of whole arc = 2 x length of upper half

_o [ /2 dr\’
—2'[0 r +(%J do

T
=2 .[o \/a2 (1+cos 0)? +a? sin? 0 dO

= 2a J‘On J2(1+ cos 0) db =2a J‘On2 cos 6/2 do

T
~ 4a _[ "cos 0/2 dO = 4a [2 sin 9] = 8a(1-0) = 8a.
0 2],
Entire length of cardioid = 8a and length of the upper half = 4a.

Now the length of arc from 6 = 0 to 6* = n/3

/3 2 /3
:j ‘/r2+(£) de:j 2a cos 0/2 do
0 do 0
0 n/3 1

= 2a

=4a
0

2 sin —
2

——0‘=2a

x length of the upper half arc.

DO |

Hence the length of the upper half arc is bisected at 6 = 1/3.

*0 = o is the equation of a half ray passing through the pole and making an angle o with the
initial line.
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point

Example 2. Show that the arc of the hyperbolic spiral r © = a taken from the

1—0101—20130{\/— V2 + 1o, [2+

Sol. The equation of the given curve is ro = a.
o=2 . d__«a
r dr 2

Required length from r = a to r = 2a is given by

2a 2
s:'[ 1,1+r2 —;ie dr
r

J-Za
Put 1[1'2 + az h

2r dr =2t dt or r dr =t dt.
When r = a, t = a4/2 and when r = 2a, t = a+/5

24 a? =

sz"‘a\/g t dt

a5 t2
Sg-tdt=] >

a2 t* —a w2 2 —q
a5 o2
2_[ I+ 35—
aﬁ t“ —a

a\/g—a
a\/g+a

1. J5-1
a\/g+—lo
2 gx/_+1

J5 -1

a
=avb+—1o
a 2 g

—(aﬁ+%log

—ﬁ—%log

]dtz[t+a2 .ilog
2a

aﬁ—a}

)

(Cor. 2, Art. 4)

2a
a r +a
1} r— -~ dr

t—a
t+a

I,

av2

av2 +a

V2 -1
V2 +

=a

fﬁ+[ oo

1
logﬁ_lﬂ
ﬁ+1

=a

1. ((5-1DG2+)
5-v2+=1
_f [+2°g((£+1w§—1)

W2 +1)?

:a_ﬁ_@+%1 4(%51)1;}
|- 2
=af x/§+10g(\/\/§+ill

W2+1DHW2-1

ﬂ
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10.

4.

EXERCISE 5.3

Find the length of the arc of the cardioid r = a@ (1 — cos 0) between the points whose
vectorial angles are o and f.

Find the perimeter of the curve r = a (1 — cos 6) and show that the arc of the upper half

2
of the curve r=a (1 — cos 0) is bisected by 6 = ?’rt

Find the perimeter of the curve (circle) r = a cos 6.

/2 2
Hint. s =2 j r2 + (ﬂ) do.
0 V do

Find the length of a loop of the curve r = a©? - 1).

[Hint. To find the limits of integration for a loop, we generally put r = 0 and find two
consecutive values of 6. Here putting r=0,0==% 1.

Limits of integration are — 1 and 1.]

Find the length of the arc of the equiangular spiral r = ae®® * between the points for
which radii vectors are r; and r,,.

Find the length of the arc of the spiral r = af between the points whose radii vectors are

r,and r,.

(a) Prove that the cardioide r=a (1 + cos 0) is divided by the line 4r cos 6 = 3a into two
parts such that the lengths of the arcs on either side of this line are equal.

[Hint. Solve r=a (1 + cos 0) and 4r cos 6 = 3a for r and 6 to find the points of intersection.]

(b) Show that the length of the arc of that part of the cardioid r = a(1 + cos 6) which lies
on the side of the line 4r = 3a sec 6 remote from the pole, is equal to 4a.

2
Find the length of the arc of the parabola 22 — 1 + cos 0 cut off by its latus rectum.
r
[Hint. The equation of latus rectum is 6 = g}
Prove that the perimeter of the limicon r = a + b cos 6 if — is small, is approximately

a
2
2n a 1+l.b—.
4" 42

Show that the whole length of the limicon r=a + b cos 6 (a > b) is equal to that of an
ellipse whose semi-axes are equal in length to the maximum and minimum radii vectors
of the limicon.

T |9 dr
Hint. Length of the limicon =2 j re+ (%) de.
0

Maximum and minimum radii vectors of limicon are a + b and (a — b).

. Equations of the ellipse are x = (a + b) cos t, y = (@ — b) sin 1.

n/ dx
Whole length of the ellipse is 4 j (E
0

Answers
4a (cos % — €os g} 2. 8a 3. ma
8a
? 5. (r,—r,) sec a



6. 2i [fr,) — for)] where f() = 7 y/r? + a® + a® sinh ™' =
a a

8. 2a [y2 +log (W2 + 1]

Remark. For the sake of convenience of the readers, we are giving below the shapes of
the curves in Questions 2, 8, 8, 9 and 10.

é
13
0=m/2

>
3 4

8. T~ 9. and 10.

r=a(l —cos 0)

TO PROVE THAT THE LENGTH OF THE ARC OF THE
CURVE p = f(r) BETWEEN THE POINTS WHEREr=a,r=b
IS

b r
———dr
-[a ,rz _ p2
From Cor. 2. Art. 4,

b ’ 2 b do
Length of arc = j 1+r2 ? dr = J J1+tan? ¢ dr ( tano=r EJ
r

:J secq)dr—'[ \/7

1 _ _ r
R

7‘2

p=rsin¢ .. secd=

[Note. p mentioned in the above Article is the length of the perpendicular from the pole
on any tangent and ¢ is the angle between the tangent and radius vector at any point.]
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Calculus—II EXERCISE 5.4

1. Show that the length of the arc of the equiangular spiral p =r sin o between the points
at which radii vectors are r, and r, is (r, — r)) sec o.

2. Show that the length of the arc of the hyperbola xy = a? between the limits x = b and
x = c1is equal to the arc of the curve p? (a* + r%) = a* r2 between the limits r=b, r=c.

NOTES

2 4 2

. . a a‘r
Hint. Equations of two curves are y = — and p2 =7
X a +r

Do not evaluate the two integrals. Show that they are equal.]

INTRINSIC EQUATION OF A CURVE

A relation between the variables s and v is
called intrinsic equation of a curve.

s is the length of the arc of a curve measured

from a fixed point A on it to ANY point P and v is the P

angle which the tangent at P makes with the tangent

at A (or with any other fixed line generally x-axis in s v

the plane of the curve). h T ;

[Note. A relation between x and y is called Cartesian Equation.
A relation between r and 0 is called Polar Equation.

A relation between p and r is called Pedal Equation.]

TO FIND THE INTRINSIC EQUATION OF A CURVE FROM
THE CARTESIAN EQUATION

Let y = f(x) be cartesian equation of curve,

where x-axis is the tangent at the origin O, the fixed Y4
point from which arc s(= OP) is measured. We know
that
d ,
tanwzd—yzl‘ ) (D
X
x ’ 2 P(x,y)
and s = j 1+(ﬂj dx = F(x) (say) .2
0 dx S \J
Eliminating x between (1) and (2), we get a o T ;

relation between s and y which is the intrinsic
equation of the curve.
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TO FIND THE INTRINSIC EQUATION OF THE CURVE
FROM THE PARAMETRIC EQUATIONS

Let x=f(t), y=F(1), be the parametric equations 4 NOTES
of the curve and let the x-axis be the fixed straight
line (tangent at the origin from which the arc is

measured). PO, Y)
Let P(x, ¥) be any point on the curve and PT ‘
the tangent at P meeting the x-axis in T. Let arc
OP =s and ZXTP = . s
Now ¢ _dy _dy/dt _F'@®) Y s
WA= e T dx/dt ~ F @) O T X
(1)
and
t
= [ IF@F + @1 di=0 0, say) o)

Eliminating t between (1) and (2), we obtain a relation between s and y which 1is
the intrinsic equation of the curve.

TO FIND THE INTRINSIC EQUATION OF THE CURVE
FROM POLAR EQUATION

Let r = f(0) be the polar equation of the curve,
the initial line being the tangent to the curve at the
pole O, the fixed point, from which arc is measured.
Let P(r, 6) be any point on the curve, so that arc
OP =s. Let tangent at P meet the initial line in T, so
that ZXTP = .

Now v=0+0¢ (1)
_do_ f@) .
tanQ)—rdr—f,(e) ..(2) X
0 |, (dr)? 0 2 2
and §= jo r+ (%j do = jo \/[f 1% + [f7(0)]" db
=F(®) (say) ..(3)

Eliminating 6 and ¢ between (1), (2) and (3), we get a relation between s and v,
which is the intrinsic equation of the curve.

TO FIND THE INTRINSIC EQUATION OF THE CURVE
FROM THE PEDAL EQUATION

Let p = f(r) be the pedal equation of the curve, the pole being at O, a fixed point
on the curve and the initial line coinciding with the tangent at O, so here p and r
vanish simultaneously at O.
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Calculus—II We know that

ds_ 4 r
dy dp dp/dr f'(r) -
T rdr r rdr
NOTES Also s= = =f.() (sa (2
.[o \/rz _p? .[o \/rz — I f(@)  (say) 2)
. ‘ ds ds
Eliminating r from (1) and (2), we get a relation between s and Ty S E
dy 1
=F(s) or ds = m
d
Y= J Wz) which on integration gives us a relation between y and s i.e. the

intrinsic equation of the curve.

Example 1. Find the intrinsic equation of the semi-cubical parabola, ay® = x°,
taking the cusp as the fixed point.

Sol. The equation of the semi-cubical parabola is ay? = x° (D
2
Differentiating 2ay . dy =3x? or &y = 3L
dx dx 2ay
Step I. Measuring s from the cusp (at the origin, where x = 0),

(e dy 2 x 9x*
we have S—JO 1+ d_ dx:JO 1+4T dx
X a’y
X 4 X
:j 1f1+ 9x3 dx:j ‘/1+%dx
0 dax 0 4a

1+9i 3/2 |*
4a 8a

9x 3/2
N 7{(“@) ‘1} @

2 4a
0
dy 3x*
Step II. t =—==—
°p any dx 2ay
tan? 9x* 9x*  9x 3
an? \y = =—=—
v 4a’y*  4ax® 4da
Step III. Eliminating x from (2) and (3), we get

s= Z—g [(1+ tan2 y)®2 —1] = Z—g [sec® v — 1]
or 27s = 8a (sec® y — 1).

this is the required intrinsic equation.

Example 2. Find the inirinsic equation of the cycloid x =a (t + sin t), y =
a (1—cos t) and prove that s* + p® = 16 a°.

Sol. The equations of the cycloid are x = a(t + sin t), y = a(l — cos 1).

ﬂ=a(1+cost),ﬂzasinlﬁ
dt d
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Step I. Measuring s from the point where t =0

t
= J x/a2(1+ cost)® +a” sin® ¢ dt
0

t
:(IJ N/1+2cost+cos2t+sin2tdt
0

t t t
=a jo J2(1+ cost) dtzaj0 1/2.2 cos? é dt = 2a J cosédt
0

=2a sin ¢/2 =4aqa [sin é]

1
2
(D)
dy dy/dt  asint 2 sin t/2.cos t/2
Step II. tan y = dx dxjdt  all+cost) = 2 cos? 12 = tan t/2
v =1/2 (2

Step ITI. Eliminating ¢ from (1) and (2) [by putting /2 = y from (2) in (1)], we
get s = 4a sin y. This is the required intrinsic equation.
ds
D]ffwrtlu,d =4acosy or p=4acosy
s%2 + p? = 16a? sin? y + 16a? cos? y
= 16a? (sin? y + cos? y) = 16a2.
Example 3. Find the inirinsic equation of the cardiotd r =a (1 — cos 0).

Sol. Suppose s is measured from the pole, where (putting r = 0), we have 6 = 0.
Now

ﬂ—asma

do

Step I. 0 ¥
(|2, (9 ? \D
s = -[0 re+ (%) do

0
= J x/a2 (1-cos 6)* +a” sin” 6 d6

J \/2a (1-cos ) do = J 1/ .2sin? —de

J 2a8in 6/2d6 = - 4a [cos 2]
0

= —4a [cos 6/2 — 1] = 4a(1 — cos 6/2)

=4qa . 2 sin? 6/4 = 8a sin? 0/4 (D
Step II. Now tan ¢ = d6 a(1—+cose) = tan 0/2
dr a sin 0
0
=— L2
o ) 2)
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Calculus—IT Step III. Again y=6+¢ =0+ 06/2=236/2 [Using (2)]

R 0 = 2y/3 or 6/4 = y/6 ..(3)
Step IV. Eliminating 6 from (1) and (3), we get
NOTES s = 8a sin? y/6.

This is the required intrinsic equation of the curve.
Example 4. Find the intrinsic equation of the curve whose pedal equation is

p2=r2_a2
Sol. The given equation of the curve is p? =r? — a2 (D
dp _, dp _ p_dr
ZpJ—Zrorpdr—rorr dp
s ar_ p_
ay Ptap T F7P e

Step 1. Let s be measured from the point where r = a. (1.e. s =0)
[ For r=0, p?=—a?from (1) and hence p is Imaginary]

* rdr _(Tr d
Step II. s = L W— L P [ from (1), r? —p?=a?]
RIS RPN -
=% =% (r*-a®)= 90 ...(3) [Using (1)]
Step III. From (2) and (3), eliminating p, we get
[From (3), p?=2as .. p=.2as. Putting this value of p in (2)]
ﬁ =+/2as.
dy

Step IV. Integrating, we have J s V2 ds=+/2a J ldy +k

i.e. 24Js =2a y + £, o))

where k is some constant of integration.
Let when y=0,s=0 .. From (4), k=0.

From (4), 2\/_= @\u

Squaring both sides, 4s = 2ay? or s= %\uz‘

This is the required intrinsic equation.

EXERCISE 5.5

1. Find the intrinsic equation of the catenary y = ¢ cosh —, s being measured from the
c

vertex (0, ¢) of the catenary and show that cp = ¢ + s%, p being the radius of curvature.
2. Show that the intrinsic equation of the parabola y? = 4ax is

s =a cot y cosec y + a log (cot y + cosec ).
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10.

Show that the intrinsic equation of the parabola x> = 4ay is s = a tan y sec y
+ alog (tan y + sec y).

Find the intrinsic equation of the curve y = a log sec ﬁ, s being measured from the
origin. “

Find the intrinsic equation of the parabola x = at?, y = 2al, these are being measured
from the vertex.

Find the intrinsic equation of the curve x = a(l + sin t), y = a(l + cos 1).

In the four-cusped hypocyloid x%3 + y2/3 = @23 show that

@) s= %1 cos 2V, s being measured from the vertex.

[Hint. Parametric equations of this curve are x =a cos® 0, y = a sin® 0. At the vertex (the
point of intersection of the given curve with its line of symmetry y = x), 6 = n/4].

1) s= 37(1 sin? y when (a, 0) is taken as the fixed point.

Find the intrinsic equation of the cardioid r = a(l + cos 0) and show that s? + 9p? = 16a?.
(1) Show that the intrinsic equation of the equiangular spiral r = a €% ¢ * measured s
from the point (a, 0) is s = a sec o [e¥ ©° * — 1].

, 2
(it) Show that intrinsic equation of the curve r=a e™is s = ayl+m” [emV —1].
m
Find the intrinsic equation of the curve whose pedal equation is p = r sin o.

Answers
s=ctan y 4. s=alog (tan y + sec )
s =a cot y cosec y + a log (cot y + cosec )
stay=0 8. s=4asin(%—%) 10. s = eV ot &,

REVISION EXERCISE

Show that the length of the arc of the parabola y? = 4ax cut off by the line 3y =8x1is a

15
1 2+ —|
(108, 2+ 12

Show that the length of the curve given by x=a(3 sin 0 —sin®0) and y = a cos® 0 measured

from (0, @) to any point (x, y) is 37(1 (6 + sin 0 cos 0).
Prove that the length of the arc of the curve x = a sin 20 (1 + cos 260), y = a cos 20 (1 —cos

4
20) measured from (0, 0) to (x, y) is ?a sin 36.
Find the intrinsic equation of the following curves : (4 to 8).
x=a (2 cost—cos2t),y=a (2 sin { — sin 21).
x=a (3 cos 0 —cos 30), y=a (3 sin 6 —sin 30) ; s being measured from 6 = g

x=asin 21 (1 + cos 21), y = a cos 2t (1 — cos 21) ; the fixed point being the origin.
r=ab, s being measured from the pole.

x=a (3 sin t —sin® f), y = a cos® {, where s is measured from the point (0, ).
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11.

11.

Show that the length s of the curve x23 + y%® = g% measured from (0, a) to the point

- 33
(x, ) is given by s = 5 Vax2.
. 9 d 9
Show that in the parabola 28 4 ocos 0, as _ : ;1 .
r dy sin 4
Hence show that the arc intercepted between the vertex and the extremity of latus rectum

is a (2 + log (1++/2)).

.2
. 0
Find the length of any arc of the curve y? (a —x) =x% or r= %
cos
Answers
s=16asin2% 5.s=—6acos% 6. 3s=4aqa sin 3y

32%[9 02 + 1+ log (6 + /62 + 1)] where y =0+ tan! 0

4s + 3a2 y + sin2y) = 0

Xo
alg 4a_3x+«/§cosh_16x_7a .
2 a—-x a .

1



Quadrature
(Areas of Curves)

6. QUADRATURE (Areas of Curves)

NOTES

ldddd

STRUCTURE

AREA FORMULAE FOR CARTESIAN EQUATIONS

We know that the area bounded by the curvey = f(x), the x-axis and the ordinates

x=a,x=bis J y dx, where y =[(x), is a continuous single valued function and y does

not change sign in the interval [a, b].

Thus, if AB is the curve y = f(x) and CA, DB, the ordinates x = a, x = b, then

b
Area ACDB = j y dx.

Note 1. We have supposed that y is a strictly
increasing function of x in the interval [a, b]. But this
condition may be removed. If f(x) goes on decreasing as we
go from C to D, the above result is still true.

If however, y = f(x) increases in certain parts of the
interval. [a, b] and decreases in other parts, as in the
adjoining figure, then the area ACDB = the area ACE I,

+ the area '\ B, E,I, + ... + the area &, DBF | (1)

where B\ F|, EF, ... En I, are the maximum and minimum
ordinates of the curve (n being finite), in the interval [a, b].

>
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Calculus—IT If ey, ey oo ¢, are the abscissae of the ordinates E\F |, E,F, ..., E F, respectively, then it
follows from (1) that

cq cy c, b b
AreaACDBZJ ydx+J‘ ydx+ ... +'[ ydx+'[ydx='[ y dx.
a c, a

5] Cn-1

NOTES Note 2. The area bounded by the curve AB, the ,

ordinates at A and B, and the x-axis is often called the Y4 Fs B

area under the curve AB. F, . \: /
Note 3. The process of finding the area bounded A 2

by a given portion of a curve is called quadrature.
Note 4. Sign of the area. We know that if

b
y =f(x) > 0 over the range a <x < b, then the area j [(x)

a
dxis +ve and if ¥ is — ve in the range a < x < b, then the

n D X

b
area j f(x) dxis also negative. The curve y = f(x) in this 0 C & B Es B
a
case lies below the x-axis over the range [a, b]. Thus, we consider the areas below x-axis as —ve.
By the area in such case, we mean the numerical value of the area.

If as x changes from a to b, y = f(x) changes sign at some intermediate point ¢ (say), then
the areas from a to c and c to b are, calculated separately and their numerical values are added.
Similarly, this result can be extended if y changes sign at more than one intermediate place in
the interval [a, b].

TO PROVE THAT THE AREA OF THE CURVE x = f(y)
BETWEEN THE y-AXIS AND THELINESy=c¢,TOy=d

IS GIVEN BY | x dy

The result follows easily from Art. 1, on Y4
interchanging x and y with the proper limits of
integration. D B
Thus, area ACDB = Jd x dy, where OC = ¢,
OD =d. ‘ c A
Example 1. Calculate the area of the ellipse R
x2/a® +y2/b2=1. o) X
2 2
Sol. The equation of the ellipse is Z_Z + Z—z =1 ()
Since the ellipse is symmetrical about both the Y
axes, therefore the area of the whole ellipse is four B
times the area under the curve in first quadrant. ,
ie., area of ellipse = 4 x area CAB. i
Now for area CAB, x varies from 0 to @ and A’ c a A ;
from (z),

y:%\/az - x? B

[Taking + ve sign before radical sign, in the first quadrant)]
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(By Art. 1.) Area CAB

= Joaydxzjoa% a® —x% dv

= éj‘a a? —xzalxzé Xa? —x2 + & gin 1L '
a Jo al2 2 al,
= é{0+—25m_1 1—0:|—é a—2.£=@
a a 2 2 4
Whole area of ellipse = 4 x area CAB = 4 X nab/4 = nab.
Example 2. Trace the curve y? (a — x) = x%(a + x) and
(a) find the area of the loop.
(b) find the area of the portion bounded by the curve and its asymplote.
Sol. The equation of the curve is y? (@ — x) = x2 (a + x) LD
() The curve is symmetrical about x-axis, since (1) contains only even powers
of y.
(1) The curve passes through the origin and tangents at the origin are given by
y%2 =x? or y =+ x. Since these tangents are real and different, .. origin is a node.

If y, and y, denote the ordinates of the curve and the tangent y = x, for the same
value of x, then
2 2
,_x(a+x) a2 2x

9 _ =
V' — Vi a-x a—x

which is > 0 for small + ve values of x and is <0 for x < 0. Thus, the curve lies above the
tangent y = x in the first quadrant and below the tangent in the second quadrant.

(ir) The asymptote parallel to y-axisis given by a—x=01.e., x =a. The curve has
no other asymptote.

(1v) The curve meets x-axis, in the point (— a, 0) and the y-axis in (0, 0).
2
(v) From (1), we have y% = Flatx)
a-x

ﬂ: (a-x)(2ax +3x%) - x%(@+x) (- 1)

2y
dx (a—x)?
_ 2a%x + ax® - 3x® + ax® + x®  2x(a® + ax - x?)
(a -x)” (@ -x)”
or ﬂ_x(aerax—xz) Ja-x  a®+ax-—x®
dx (a-x)? .xJa+x (a—x)3/2\/a+x
d
2 Owhen 22 —ax—a?=0
dx
aiw/a2 + 4a® +22
or x= 2 =2 2 a=1.6a0r—.6a
Thus, the tangent is || to x-axis at x =— .6a. The value of x = 1.6a is rejected as we

shall see in the next step that y is imaginary when x = 1.6 a.

Again, dy/dx = < when x =+ a. Thus, at (—a, 0), the tangent is parallel to y-axis
andasx —>a,y— .

X = a is an asymptote, a fact already established.
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Calculus—II (vi) From (1), we have (taking + ve root),

YA
a+x
y=x ..(2) b
a—Xx x
NOTES When x<-—aor when x > a, y is imaginary. ' o //,;*
Hence no portion of the curve lies beyond the lines X ‘ >
x =% a. Thus, the shape of the curve is as shown in (-a, 0) ! 7 ‘\5\* X
the figure. b ™
Now for the loop, x varies from — a to 0 and
the loop is symmetrical about x-axis. Y

(@) .. Area of the loop
= 2 X area of the upper half of the loop

0 0 fa +x
ZZJ‘ ydx=2j x dx ..(3)
-a -a a—Xx
a+x
Now j x‘/ dx.
a-x
Rationalising the numerator by multiplying the numerator and denominator

by Ja+x .

dx +

J (a+x) d Jx/i J\/a?xzjdx
a? —(a® - x?)

:(IJ. x (@ —x9) 2 dx + j x/i dx
=- %j (@% —x%) 12 (- 2x) dx + a? j de

2 _ 2
@ -xH"? 5 x |xfa®-x* o | i«

—J a® - x% dx

a
= = T +a“sin~—-|—————+—sin
2 2 a 2 2 a
2 2 2
a .1 X xXqa —X
SR R RN A Ll )
2 a 2

From (3), area of the loop

i 2 2
2 a . -1 a 2
=9 |-a® -2 —Dl=2ol X _
2 _ a 5 sin™ ( )} { ) a }
242 2
= _a (m—4) = _a (4 — m) numerically (v m<4)

(b) For half of the area bounded by the curve and its asymptote x varies from
0 to a.

Area between the curve and its asymptote

=2jaydx=2jax LR, [Using (4)]
0 0o Va—-«x
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a
[ 2 2
2 2 a® . 11X XyJa —Xx
=2 |—aya” —x +?sm -

a 2

2 2
=2 a—sin_ll—(—a.a) =2 a—£+a2
2 2 2

,(nt4 _a®
=2a 4 —?(n+4).

Example 3. Find the area included between the curve xy? = 4a® (2a — x) and its
asymplote.

Sol. The equation of the curve is xy? = 4a? (2a — x) (D
Let us first trace the curve roughly to find limits of integration for the area.

() The curve is symmetrical about x-axis.
(1) The curve does not pass through the origin.

(11) The curve meets the x-axis in the point (2a, 0). Shifting the origin to point
(2a, 0), equation (1) transforms to (X + 2a) Y2 = — 4aX, and tangent to the curve at the
new origin is X =0, i.e., the new y-axis. Hence at the point (2a, 0) tangent to the curve
is || to y-axis.

The curve does not meet the y-axis. Y4

(v) x=01.e., y-axis is the only asymptote of the curve.

(v) From (1), y=1%2a 2a-x

(2
x

When x is negative and x > 2a, y is imaginary. Hence o g 2a
no portion of curve lies to the left of y-axis and to right of line
x = 2a.

XV

8a?

X=—5——5 .
y2+4a2

From (1),

Now area required

= 2 X area between the upper half of the curve, y-axis and x-axis

o - 3
:2J‘xdy:2 %
0 0 y“ +4a

=16a3.i. tan~! 2
2a 2a |

= 8a? (g - 0) = 4na?.

Example 4. If A 1s the vertex, O the centre and P any point on the hyperbola

2 2
x oy _ 28 . .. 28
= —<Z_ =], prove thalt x =a cosh — , y=b sinh —,
a? b2 P ab Y ab
where S 1s the sectorial area AOP.

Sol. Draw PM 1 on OX.

S = Area OAP

= Area of AOMP — area AMP > 6] A& ;
=dxy - J y dx where

YA

Quadrature
(Areas of Curves)
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or

or

or
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2 2
y:é x% - a? ( Fromthehyperbolax—z—z—z=1,y=é xz—azj
a

a a
22.2 xz—a2—2J‘x x2 —a? dx
2 a a vJa
r X
bayx?—-a? b x\/xz -a? o2 11X
= -— ——cosh™ —
2a a 2 2 a
L -a
bxyx?-a® b _x\/xz -a? 2 _ ]
S = - -2 cosh X [+ cosh?11=0
2a a 2 2 a
S = a—bcosh_1£
2 a
2
ﬁ —cosh X x=a cosh —
ab a ab
2
Hence y= L -a® =é\/a2 coshz—s—a2
a a ab

y=bsinh§‘
ab

EXERCISE 6.1

Find the area bounded by each of the following curves, the x-axis and the ordinates x =
0, x=h:

@) y=e* (ii)yzccoshg .

(a) Find the areas bounded by each of the following curves, the x-axis and the ordinates
x=a,x=b:

@) xy = c2 @) y =log x.

{Hint.j 1ogxdx:j logx.lcﬁc:(logx)x—j lxdxleogx—xzx(logx—l)}
I X

x .
(b) In the catenary y = a cosh — |, prove that the area between the curve, the x-axis and
the ordinates of two points on the curve varies as the length of the intervening arc.

Show that the area cut off a parabola by any double ordinate is two-thirds of the
corresponding rectangle contained by the double ordinate and its distance from the vertex.

Obtain the area bounded by the parabola y? = 4ax and its latus rectum.
(@) Trace the curve a2y? = a2x% — x*. Find the whole area within it.

(b) Find the area enclosed by the curve.

y2=x2 — xt

. . 8
Trace the curve ay? = x2 (a — x) and show that the area of its loop is 1 a?.

[Hint.J xia—x dx=J [a —(a - x)] a—xdx=aj (a—x)l/de—J (a—x)3/2dx.]

(a) Find the area of a loop of the curve a’y? = x* (b + x).

[Hint. To evaluate J xZ,Ib +xdx,put b+x = t.]



10.
11.
12.

13.

14.

15.

16.

17.

18.

(b) Find the area of a loop of the curve 3ay? = x (x — a)>

(c) Show that the area of a loop of the curve y? = x (4 — x?) is 1—; .

Trace the curve a*y? = x° (2a — x) and prove that its area is to that of the circle whose
radius is @ as 5 to 4.

Prove that the area of the curve a?x?> = y3 (2a — ) is equal to that of the circle whose
radius is a.

[Hint. Area = [ xdy ]

Find the area enclosed by the curve xy? = 4(2 — x) and y-axis.

Find the area included between the curve x%y = 4a® (2a — y) and its asymptote.
(1) Show that the area of the loop of the curve

2
ay® = (x—a) (x—5a)?is 1i56 a?.

(1) Show that the area of the loop of the curve y> = x> — 11x? + 35x — 25 is % .

[Hint. Equation of the curve is y? = x* — 11x% + 35x — 25.
y=x>—x2—10x%+ 10x + 25x — 25
=x2(x—-1)—-10x(x—1)+25(x—1)
=(x—1) (% —10x + 25)
=(x-1) (x-5)2
It is part (1) with a =1.]

2 2
a® —x
(@) Find the whole area of the curve y? = a2 (az n xz] .

a ’ 2 _ 2
Hint. It will be found that area = 4 j x a2 xz dx. Put \/az +x2 =t
0 Va“ +x

(b) Find the whole area of the curve x2 (x* + y2) = a? (x2 — y?).

[Hint. It is same as part (1).]

Find the area of a loop of the curve x(x2 + y%) = a(x? — y?). Also find the area between this
curve and its asymptote.

Find the area between the curve x*y? = a? (y? — x2) and its asymptote.

3
x
Find the area between the curve y2 = %a

- and its asymptote.

Show that the area of the infinite region enclosed between the curve x> (1 —y)y = 1 and
its asymptote is 27.

2 2
In the ellipse x_z + y—z =1, prove that x=a cos 2—, y=>bsin @ , where Sis the sectorial
a® b ab ab
area bounded by the ellipse, x-axis and the line joining (0, 0) to (x, y).
Answers
@ eh—1 (1) ¢? sinh —
c
5 b .. 8
(@) (1) ¢*log — @) blogb—aloga—(b-a) 4.§a
a
4 4
= b) =
(@) 3¢ ) 3
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Calculus—II

NOTES

8a2 YA
7. (a) 2 b7/2 a—3/2 (b) L
105 5v3
10. 4n 11. 4na? o et
13. 2 (n—2 b) a? (n -2 A - A,
(@) a* (t—2) (b) a* (mt-2) a.0) - - @0 X
o2 a2 —~- 0 <<
4. - (-m, @) 15. 4a? . .

16. 3ma?.

AREA BETWEEN TWO CURVES

To prove that the area bounded by the curves y = f(x), y = ¢(x) and the ordinates
b
x=a,x=bis j (v, -y, dx
a

where y , is the 'y’ of the upper curve and y, that of the lower curve.

Let AB, CD be the curves y = f(x), y = ¢(x) and Y4
MCA, NDB be the ordinates x=a, x=b. Then areca ACDB
= area AMNB — area CMND

= J‘j f(x) dx — J‘j o0(x) dx

»

= jb 1) — 0(9)] dx

Xv

b
= J (yl _y2) dx 0
where y, = f(x) is the ‘y" of the upper curve AB and y, = ¢(x), is the %y’ of lower curve CD.
Cor. The area bounded by the curves x = f(y), x = F(y) and the abscissae y = ¢,
y =d is given by
d
J [(x of outer curve) — (x of inner curve )] dy.

Caution. While applying formula of Art. 3 one must see the figure of the problem
very carefully. In some problems we may have to use [(y, +y,) dx (see example 2).
Example 1. Find the area included between the parabola x° = 4ay and the curve
y(x% + 4a?) = 8a’.

Sol. The equation of the parabola is x% = 4ay (D)
It is an upward parabola with y-axis as its axis and the origin as its vertex.
. . 8a3
The equation of the curve is y = —— ..(2)
x“ +4a

() The curve (2) is symmetrical about y-axis.

(1) The curve does not pass through the origin. The curve does not meet x-axis
and it meets y-axis in the point (0, 2a).

(1) y = 0 is an asymptote of the curve (2).
From (2), y > 0.
The curve given by equation (2) lies above the axis of x.

Thus, the shape of the curve (2) is as shown in the figure (along with the
parabola (1)).
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To find abscissae of points of intersection
eliminating y between (1) and (2), [i.e., putting the
value of y from (2) in (1)], we get

8a®
¥=da. —
v “ x2 + 4a>
or xt + 4a2x? - 32a* =0
or (% + 8a?) (x* —4a®) =0

Rejecting x? + 8a? = 0 which gives imaginary values of x, we have x? — 4a? =0 or
X == 2a.

When x=+2a,y=a [from (1)].
Hence the points of intersection are A(— 2a, a), C(2a, a).
Required area OABC = 2 x area OBC

2a 2a¢( 8¢ x2
:2J — dx=2j - __Z |dx
0 01 =9y 0 (x2+4a2 4aJ
2a
8g? Lian1 X 1 2%
2a 2a 4a 3 0

1
=91 4a? (/4 - 0) — ——(8a3 —

9 2 2) 2 9
= -— =—a - 2).
(m 3a 3 a* (3n )

Remark. We know that the equation of the circle whose centre is (o, f) and radius
ais (x- )2+ (y-p)2=a’

If centre (o, B) is (0, 0) ; then equation of circle is x% + y? = a?.

Example 2. Find the area common to the parabola y® = 4x and the circle 4x° +
4y? = 9.

Sol. The required area is the area common YA
to the interiors of the parabola
5 y = 2V
y¢ =4x (1) A

[Parabola (1) is a rightward parabola and is y

symmetrical about x-axis.|
and the circle 4x?+4y2=9 (2
Dividing every term of eqn. (2) by 4,

9 (3)?
2ry2=2=2
»=3=(3)

which is a circle whose centre is origin and radius

no|wo

1
2

u

[9_2
4
X

L SN

[o9)

is —.
? Putting y? = 4x from (1) in (2), 4x* + 16x —9=10
o -16+,/256+144 -16+20 _1 9
8 8 27 2
When x=— 9 , from (1), y? =— 18 is negative and hence y is imaginary and hence
impossible.

Quadrature
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NOTES

Whean%,from 1), y*=4x=4x % =2
The two points of intersection of parabola (1) and circle (2) are
1 1
A —,\/5 and B —,—\/5 .
2 2
Both the curves are symmetrical about x-axis.

For the parabola (1), y = 2 4/x in the first quadrant.

9
For the circle (2), 4y? =9 — 4x? or y? = i x2

or y= ,}% —x? in first quadrant.

Required area OADBO (shaded)
=2 % Area OADO = 2 [Area OAC + Area CAD]

[ (V2 32 [9
=9 '[ Zﬁdx+'[ Z %2 dx} [Area =]y dx]
0 172 V4
5 ° 3/2
3/2 1/2 X 7_x2 il
—9l2.% L +Agin 2
3/2 0 2 2 3/2
1/2

V2 9 n V2 9. 41] 9n 9. ;1 2
—_—t =, sin =— ——sin _—
3 82 4 8 3 8 4 3 6
Example 3. Find the area of the region enclosed between the two circles x> +y2 =1
and (x —1)>+y2=1.

Sol. The equations of the two circles are x? + y? =1 (D
and x—12+y%2=1 (2

The first circle has centre at the origin and radius 1. The second circle has
centre at (1, 0) and radius 1. Both are symmetrical about the x-axis.

For points of intersections of circles (1) and (2)
From (1),
Putting y>=1—-x?ineqn. (2), x— 1?2+ 1-x2=1

y2:1_x2

or 2+1-2c+1-2%2=1 or —2¢+1=0 . x=3%

*[imits of integration for parabola are x = 0 to x of point of intersection and for circle are x of
point of intersection to x = radius of circle.
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Also in the first quadrant,

N
S~ A

From (1), y = y/1- x2
From (2), y = 4/1-(x - 12 .

Required area OACBO (shaded)
=2 X Area OAC
= 2 [Area OAD + Area DAC]
[ r1/2 1
=2 J y of circle (2) dx +J y of circle (1) dx]
| Jo 1/2

(Note)

=9 _J.Ol/Z’, 1-(x - D%dx + J.ll/zwl 1- x2 dx]

5 V2 5
=92 {((x—l) 1-&-1 +%sin_1(x—1)} +{—x 1-«x +%sin_1x}

2

0

= {— 1\/§ + sin_l(— 1)} —{sin! (= D} +sint1- {1\/5 +sin~! 1}
2\4 2 2\4 2

V3 n.om m Y3 m_2n 48

4 6 2 2 4 6 3 2
Example 4. Find the area of the region lying

1

1/2

Quadrature

(Areas of Curves)

NOTES

above x-axis and included belween the circle x° + y? s A(a, a)
= 2ax and parabola y® = ax.
Sol. Equation of circle is x? + ¥ = 2ax ...(1)
Equation of parabola is y? = ax ..(2) c
Adding a? to both sides of eqn. (1), 0) a ;
x? —2ax + a® + y* =a?
or (x—a)2+y?=qa?
y=ya?-x-a)? ..(3) B

which represents a circle whose centre is (a, 0) and
radius is a. Also circle (1) passes through the origin.
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Calculus—I1 To find points of intersections of circle (1) and parabola (2).
Putting ¥? = ax from (2) in (1), we have
¥2+ax=2ax or ¥ —ax=0orx(x—a)=0 .. x=0,a
NOTES When x=0, y =0 ; when x = a, y? = a? so that y = a (in 1st quadrant)
The two points of intersection are O(0, 0) and A(a, a).

Required area (shaded)
= J: (y of circle (1) t.e., (3)) dx — J: (y of parabola (2)) dx

= [Na* - -adx - [ Vailx dx

a
_ 2 _(w—a)2 2 _ 3/2
:[(x aha® —(x—a) L a} _Ja x
2 2 a

2
=0+0)—|0 +%sin_1 (- 1)} —%JE a2

2 2 2
a® n 2a a
“22 3 Oy

Example 5. Find the area common to the circle x> + y> = 4 and the ellipse
X2+ 4y’ = 9.

Sol. Let P be the point of intersection in the
first quadrant, of the circle and the ellipse, as shown
in the figure. B P

Draw MP1 x-axis.

To find abscissae of the points of intersection, 0 M
eliminating y? from the two equations of the curves,
we have (Putting y? =4 — x? from first equation in the
second equation)

2+44-xH)=9 or 3a2=7

which gives x=4/7/3 for P.
[Rejecting — ve value as P lies in first quadrant]

Now y= %119 —x2 , for the ellipse and y= /g4 _,2 ,for the circle.

Since the circle and ellipse are symmetrical about the axes.

YA

XV

Required area common to circle and ellipse
=4 x area OAPB
= 4 [area OBPM + area PMA]

N 5 2 5
j —49-x dx+'[ 4-x°dx
2 773
x| 4 X 2
E 4—.’)C2 +§Sin_1§:|

NeIE}
{
NIE)

2
{ J Ja? —x%dx =g1/a2 - x? +%sin_1£}
a

=2 [31/9 —x? +gsin_1g}

0
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10.

= F.,/9—Z+9sin‘1 /l—o +2 0+4sin_11—\/z/4—1—4.sin_1,/l
3 3 27 3 3 12
:\/z E—Z\/E +9sin™! l+8—n—85in_1 l
3V 3 3 V27 2 V12
=47+ 9 sin! /l —8gin! ,[l
27 12

EXERCISE 6.2

(@) Find the area bounded by the parabola x2 = 8y and the line x — 2y + 8 = 0.

(b) Show that the area of the segment cut off from the parabola y? = 2x by the straight
line

y=4x—11s 9/32.
(a) Find the area of the segment cut off from the parabola y? = 4x by the straight line
2x—3y+4=0.
(b) Find the area bounded by the curve y? = x* and the line y = 2x.
Find the area bounded by the parabola y = 2 — 12 and the straight line y = — x.
(@) Find the area common to the parabolas y? = 4ax and x? = 4ay.

(b) Find the area included between curves y2 = 4bx and x2 = 4ay.

(¢) Find the area enclosed between the parabola y2 =8x and x* = 12y.

Find the area common to the parabola y? = ax and the circle x? + y? = 4ax.

Show that the larger of the two areas into which the circle a2 + y2 = 64a? is divided by the
1

parabola y? = 12ax is ?6a2(8 T—43).

Find the area of the smaller portion enclosed by the curves y> = 8x and % + y2=9.

Show that the area enclosed between the parabolas

2
y2=4a(x + a) and y* = - 4a(x — a) is 16a .

Find the area enclosed between the parabolas
y®=4a (x + a) and y* = 4b(b — x).

[Hint. The points of intersection of the two parabolas are

x=b—a,y=+2.ab.

b-a b
Required Area =2 U_ v4a (x + a)dx + Jb ) J4b(b - x) dx]

Find the area of the region lying above x-axis and included between the circle x% + y? = 4x
and the parabola y2 = 2x.

[It is Example 4 with a = 2]

Quadrature
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Answers
1. (@) 36 Numerically 2. (a) % b) %
1 @382 (b) 1620 (© 32
3 3
5. a® (3\/§ + 4_nJ 7. —2ﬁ + M _9gint 1
3 3 2 3
8 1
9. g(a+b)m 10.5(81[—8)‘

AREA FORMULAE FOR CURVES GIVEN BY
PARAMETRIC EQUATIONS

() To prove that the area bounded by the curves x = (1), y = 0(t), the x-axis and
the ordinates at the points where, t =a, t = b 1s given by

b
[ v X g ()
The parametric equations of the curve are x = f(1), y = 0(1).

From Art. 1, we know that

t=b b dx
i = dx= —dt.
Required area ydx L y at

t=a
@) Similarly, the area bounded by the curve x = f(t), y = ¢(l), the y-axis and the
abscissae at the points where t =c, t =d is given by

d
L g @
¢ dt
Example 1. Find the area included between the cycloid x = a(0 — sin 0),

y =a(l —cos 0) and its base.

. . . Y
Sol. For the first half of the cycloid, 6 varies from *
0 to m. B
Required area bounded by the cycloid. A i
=2 j“y.d—x de By At 4G ) ! B
o° do Oloe=0 b=2nr ¥
T
=2 .[0 a (1—cos 0). a(l—cos 0) do
[~ y=a (@ —cos0)and x=a (0 —sin 0)]
m n 9 0 2
= 2a? J (1 —cos 0)2 d6 = 2a? J (2 sin —) do
0 0 2
= 2a? Jn 4 sin* 9 do
0 2
Putg: s 0=2 . do=2dl
s
When 06 =0, t:0;when6=n,t=§
/2 /2
= 8a? J sin* ¢ . 2dt = 16a? J sin* t dt = 16a? . E.E = 3na?.
0 0 42 2
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EXERCISE 6.3 (Areas of Curves)
x 2/3 2/3
1. (@) Find the area of the curve x = a cos® {, y = b sin® { or the curve (;) + (%) =1. NOTES
2 /2 3 9
Hint. Area of curve =4 yE .dt=4 J b sin” t (- 3a cos” ¢ sint) dt
0 0

(b) Find the area of the curve x%/® + y2/3 = g2/
or x=acos®t, y=asin? 1.
(¢) Show that the area of the ellipse x =a cos t, y = b sin [ is mab.

2. Prove that the whole area between the four infinite branches of the tractrix.

a 5t . . 9
x=acost+§logtan E.yzasmtlsna.

/2
{Hlnt. Area =4 J. y%dt }
dt
1-¢2 2at
3. Find the whole area of the curve x =a 5|,y = 5 .
1+¢ 1+¢

[Hint. Eliminating ¢ (by squaring and adding), we have x? + y2 = @ which is a circle of
radius a. Hence area = ma? ]

4. Find the areaincluded between the cycloid x=a (6 + sin 0), y =a (1 — cos 6) and its base.
5. Find the area of the loop of the curve x = a(l — 12), y = at(1 — {?).

[Hint. Dividing { = %, putting this value of £ in x =a (1 — {2) we have ay? = x2 (a — x)

a
Area of loop =2 j y dx. Also See Q. 6, Exercise 6 (a).]
0

. 3
6. Show that the area bounded by the cissoid x=asin?{, y=a S Y ondits asymptote is
cost
3na®
T

[Hint. Eliminating ¢, the equation of the curve is y? (a — x) = x°.]
. o4
7. Show that the area of a loop of the curve x=a sin 2t, y = a sin t is 3 a*.

[Hint. Change to cartesians for tracing.]

Answers
1. (o 3?“ ab (Numerically) ®) % na’ Ya
t=n/2 | (0, Q)
3. ma®
t=0 -

4. 3ma? 5. ia2 (Numerically). t= T;

15 0O X

Note. For sake of convenience of the reader, the shape of \/
the curve in question (2) is being given here. (0, —a)
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Calculus—II

AREA FORMULA FOR CURVES GIVEN BY POLAR
EQUATIONS

NOTES To prove that the area bounded by the curve
. . (B
r =£(0) and the radii vectors 6 = o, 0 = is J 3 r? de,
o
wherer =f(0)is a continuous and single valued function
of 6 in |o, B].

Let AB be the curve r = f(0), and OA, OB the
radii vectors

0=0o,0=p.

Let P(r, 6) be any point on the curve. Let the
sectorial area OAP be denoted by A, which clearly is a function of 6.

Let Q (r + &r, 6 + 86) be a point on the curve close to P.
Then the area OPQ = dA.

With O as centre and OP, OQ as radii, draw circular arcs to meet OQ, OP
(produced) in R and S respectively.

Then the area OPQ lies between areas of two circular sectors OPR and 0SQ.
ie.,  8Alies between 3 r2 80 and 3 (r + 8r)2 6.
1

[~ area of a circular sector = 5 (radius)? x circular
measure of angle of the sector]

% lies between + r? and 4+ (r + &r)?

Proceeding to limits as 86 — 0 and .. ér — 0, we get

% lies between 1 r2 and a quantity which — 5 r2 .. % =21
Integrating both sides within the limits o and f.
B B dA
1.200=| 2 g0=7A7°
L 12 dg L Csdo=[al;
= (value of A when 6 = ) — (value of A when 6 = )

=area OAB -0

B 1
Hence area OAB = J 2 r? do.
o

Note 1. In the above result, we have supposed that ris an increasing function of 6 in the
interval [o, B]. The result is still true even if the radius vector r decreases as 6 varies from
o to .

Note 2. In some cases, it is more convenient to transform a given cartesian equation
into polars than to solve for y. In such cases, the formula of the present article is applied after
changing to polars.

Example 1. Find the area of a loop of the curve r = a cos 20 and hence find the
total area of the curve.

Sol. The curve r = a cos 20 has four equal loops (see Note 1, the end of this
example).
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For a loop putting r =0, we get

cos 20 =0 (two consecutive values)

|3

99 = —~
0= 5’

(See Note 2 at the end of this example)
-T T

LIS

1.e., for the first loop of the curve 0 varies from % tog

Area of one loop of the curve

n/4 /4
=_[ 1rzolezl_[ a2 cos? 20d0
-n/4 2 2J-n/4

a2 n/4
= ?X2J.0 cos? 20 dO

[~ cos? 20 is an even function of 6 and for an

even function f fx)dx=2 j: f(x) dx]

n/2
=a? J cos? t% (Putting 20 = ¢)
0
a?1n ma? 3n/4 /4
222 8§
Total area of the curve >
=4 X (Area of one loop) 0 X
th2 71;0!2 5n/4 77/4 or
B R e

Note. 1. It should be carefully remembered that the curves r = a sin n6 or r = a cos nf
have n equal loops if n is odd and 2n equal loops if n is even.

Note. 2. To find the limits of integration for a loop we generally put r =0 and find two
consecutive values of 0.

Example 2. Find the area of the loop of the folium of Descrates, x° + y° = Saxy.
Sol. The equation of the curve is x° + y° = 3axy

YA
Changing to polars, (see Note 2, Art. 5) by P
putting x =r cos 0, y =r sin 0 ; (i) reduces to
r (sin® 0 + cos® 0) = 3ar? sin 0 cos 0 S
3a sin 6 cos O )
or F=""3,, 3, - z >
sin” 6 + cos” 6 o \O X
For the loop, putting r =0, we get sin 6 cos 6
=0i.e.,sinGZOandCOSGZOorGZO,E‘ 4 'f'\;\
2 LN\
Hence for the loop 0 varies from 0 to g ) o

Area of the loop

n/2 ] 9a2 (w2  sin? 0 cos? 0
—r2do=

do
0o 2 2 Jo (sin®0 + cos® 0)?

Quadrature
(Areas of Curves)

NOTES
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Calculus—I1 2 2 2
9a“ (%2 tan”0sec” 0
= dO (On dividing the num. and den. by cos® 0
2 Jo (1+tan®0)? ( & Y )

(Putting tan® 0 = ¢, so that 3 tan? 0 sec? 6 dO = di)

NOTES _ﬁr’ di
2 Jo 1402

3¢ 171 _3a® 3a”

T2 [_1+tl_ g 0-CDI==~

EXERCISE 6.4

1. Find the area of any sector of each of the following curves :
@Oro=a®=0otob=p)
@yr=ae®*©@®=Pto0=p+y, (y being < 2m)).

2. Find the area of one loop of the following curves :

@) r=asin 20 (1) r = a sin 30
@@i1) r=a sin 46 (iv) r = a sin nb. Also state the total area.
na? na?
3. Show that the area of a loop of r=a cos nf1is e Also prove that the whole areais —
n

na . .
or - according as n is odd or even.

4. Show that the area contained between the circle r = a and the curve r = a cos 56 is equal
to three-fourths of the area of the circle.

T
5. Find the area of a loop of the curve r = a6 cos 6 between 6 =0 and 6 = R
Trace the curve r? = a? cos 20 and find its area.
Find the areas bounded by :
(@) the cardioid r = a(l — cos 6)
@1) the cardioid r = a(1 + cos 0).
8. Show that the whole area of the curve represented by the equation
r=a+ bcos 0, assuming a> b is g 2a? + b?).
9. Prove that the sum of the area of the two loops of the limacon
r=a+ bcos 0 (a<b)isequal to g 2a? + b?).

10. Find the area bounded by r? = a? cos? 0 + b2 sin? 0.

[Hint. The curve is symmetrical about the lines 6 =0 and 6 = g
2 1 2
Area=4 J. —r* de.
o 2

11. Show that the area of a loop of the curve r=,[3 cos 30 + sin 36 is g

12. Find the area of the loop of the following curves :
(@) (& + %) = daxy” (b) x* + y* = 4a” xy
(c) 25 + yb = Bax2y2.
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13. Prove that the area of the loop of the curve x* + y® = 3axy is three times the area of a loop

of the curve r? = a2 cos 20.
14.

b
r:bislj _prdr
2 @ r2_p2

{Hint, Area = _[ %rz do = _[

lrzﬁdr:j lrisanq)alr('.' tanq):r@)
2 dr 2 dr )’

Now use p = r sin ¢. }

1 1
1. () a? [a - E]

Answers

2
(i) aT tan o e2 B oot o [e2veota 1]

Show that the area bounded by the curve p = f(r) and the two radii vectors r = a,

2 2 2
na . T o TIOL
2. () — 1) —— 1) ——
® 3 (1) T () 16
na? na?  ma®
@iv) e ; total area = 7 5 according as n is an odd or even positive integer
n
YA
0 = 3n/4 0 = /4
2(, 2 RN ,/,
5 ﬂ’i(n— - ] 6. B/ a TN a A >
16 6 (—a, 0) //O N (a, 0) X
0 =5m/4 0=—n/4
3 .3 n
7. () — na? i) = na? 10. = (a®> + b?
UK i) 5 @)
2 2 2
1o’ 1o’ 5a
12. (@) — b) — c) —
(@) 1 (b) 2 (©

7

Note. For the sake of convenience of the reader the shapes of the curves in question 2

(i1) and question 4 are being given below.

XV

13110~ 1\
15710

XV

AREA BETWEEN TWO POLAR CURVES

To prove that the area bounded by the curves r = f(0), r = F(0) and the radit

vectors O =o, 6 = is

§
L 1 (r,2-r,%do

where r, is the v’ of the outer curve and r, that of the inner curve.

Quadrature
(Areas of Curves)

NOTES
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Calculus—I1 Let AB, CD be the curves r = f(0), r = F(0) and
OCA, ODB the radii vectors 6 = o, 6 = 3 respectively.

Then area CABD

NOTES = area OAB — area OCD

B B
= [ 41ror do-| Lre)r do

xXv

= 1 4 W - o) do

B
= L % (,‘12 _ ,.22) do
where r; = [f(0)] is the value of r of the outer curve and r, = [F(6)] is that of the inner

curve.

Example 1. Find the area common to the circle r =a and the cardioid r =a (1 +
cos 0).

Sol. Equations of the two curves are
r=a ...(1) (circle with pole as centre and radius a)
and r=a (1+cos0) ...(2) (cardioid)

Solving (1) and (2) [To find points of Intersection], by putting r = a, from (1) in
(2), we have a = a(1 + cos 0)

or cos0=0 or 0=+

]

t.e., two curves cut each other at points where 6 =+ g )

Required area = 2 (the shaded area) = 2 [Area OABO + Area OBCO] ...(3)

Now area OABO Y78
n/2 1 0=m/2

_ — 2 —
_Jo o ! doforr=a

And area OBCO

= J‘n 1 r2 do for r = a(l + cos 0)
n/2 2

1 5 (™
== 1+ 2d
2a -[n/Z( cos 0)? db
_ 1 2 T 3 2
=50 .[n/z (1 + 2 cos 6 + cos* 6) do
2 2
:a_J‘“ 1+20056+1+c_osze de:a—j (§+2c056+100529J do
2 Jn/2 2 Jn2\ 2 2
2 n 2 2
a3 . 1. a® | 3n 3n a
=—|—0+2sin 6+ —sin 20 -~ === _
= : Lm 2[2(4 ]]8<% 9 6

Putting the values from (4) and (5) in (3), the required area

2 2
na a of b1
2{4 8(n )} a(4 J
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EXERCISE 6.5

Prove that the area common to the circles r=a /2 and r = 2a cos 0 is a*(n — 1).

Prove that the area of the region included between the cardioids r = a(1 + cos 6)
(12
and r=a(l —cos 0) is 5 Bn —8).

Find the area outside the circle r = 2a cos 6 and inside the cardioid r =a (1 + cos ).

Find the area inside the circle r = sin 0 and outside the cardioid r =1 — cos 0.

Answers

MISCELLANEOUS EXERCISE

(@) Find the area of the segment cut off from the parabola y? = 4x by the straight line
2¢ -3y +4=0.
(b) Find the area bounded by the curve y? = x* and the line y = 2x.

Show that the area included between one of the branches of the curve x%y2 = a?(x2 + y?)
and its asymptotes is equal to that of the square whose side is a.

- a |dx.

Hint. Area in first quadrant = J (y1—y2) dx = '[ 2ax
a

\[x —a2

Show that the area of the loop of the curve a?y?> = x> (2a — x) (x — ) is % a’m.

Show that the area of the loop of the curve y* = 3x% — x* — 242 is 3?“ .

[Hint. Equation of the curve is y2 = 3x% — x* — 2x2

=x2 (-x2+3x-2)

=2 (2 +x+2x-2) =[x @x-1)+2(x-1)]
or y=x2(x-1) ©Q2-x)
Now it is Q. No. 3 with a =1].

Show that the area enclosed by the curves xy? = a? (a —x) and (@ — x) y> =a?xis (1 — 2) a>.
{Hint. The point of intersection is x = %}

a sin 30 _asin 30

Find the area of the loop of the curve x = — ,y
sin 6 cos 0

Y

Eliminating 0, equation of the curve is y? (a + x) = &> (3a — x)].

[Hint. Dividing tan 0 =2 - sin 0=
X

Find the area of a loop of the curve y?x + (x + @)? (x + 2a) = 0.

x+ 2a

—-a —a
Hint. Area of loop=2| ydx= 2'[ (x +a) dx. Put x =— 2a sin 2 0. ]
2 -2a

Prove that the area included between the folium x* + y3 = 3axy and its asymptote is
equal to the area of its loop.

Show that the area of a loop of the curve r = 43 cos 36 + sin 30 is g .

Quadrature
(Areas of Curves)

NOTES
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10.

11.

NOTES 12.

130  Self-Instructional Material

13.

14.

15.
16.

17.

18.

19.

15.

Find the area of the ellipse L =1+ecos6.
r

Find the ratio of the two parts into which the parabola 2a = r(1 + cos ) divides the area
of the cardioid r = 2a(1 + cos 0).

Show that the ratio of the area of the larger to the area of the smaller loop of the curve

r=—+cos2eism‘
2 (21 - 343)

Show that the area of the region enclosed between the two loops of the curve r =
a(l + 2 cos 0) is a2 (m + 3 /3).

Show that the area of the segment cut off from the parabola y? = 2x by the straight line
9
=4x—-11s — .
y is 35
Find the area bounded by the parabola x? = 8y and the line x — 2y + 8 = 0.
Prove that the area of a sector of the ellipse of semi-axes @ and b between the major axis

1
2

ellipse and 0 is the eccentric angle of the point to which the radius vector is drawn.

and a radius vector from the focus is 5 ab (6 — e sin 0) where e is the eccentricity of the

. . x
If A is the area contained between the catenary y = ¢ cosh — |, the two axes and an
c

ordinate at the extremity of the arc s, show that A = ¢s ; s being measured from the
vertex.

Prove that the area of a loop of the curve r = a cos 30 + b sin 30 is 1—12 n(a® + b2).

Find the area of the loop of the curve x* + 3x2y? + 2y* = a2 xy.

Answers
1 16 2
@ 3 b 5 6.3/3a
T 2 91 — 16
2(1-= ——  —
2 ( 4) 10 (1-e2)%2 N 516
2
76 19. £ log 2.
3 4



7. BETA AND GAMMA FUNCTIONS

Beta Function

Gamma Function

In this chapter, we are going to study Beta and Gamma functions, their properties
and relationship

BETA FUNCTION

We have seen in example 7 of chapter 10 that the integral
1
J‘ xm—l (1 _ x)n—l dx
0

is convergent for all positive values of m and n. This integral, obviously a function of m
and n, is called a Beta function and is denoted by B (m, n), i.e.,

B(m, n) = Jl T 1-x)"tdx, Vm=>0,n>0
0

Beta function is also called the First Eulerian Integral®.
For example,

(1 . .
@) J x* (1 — x)® dx is a Beta function B(5, 6).
0
The integral can be easily evaluated by expanding (1 — x)°.
o 1 . . 5
@) J x23(1 — x)® dx is a Beta function B (g , 7)
0
The integral can be easily evaluated by expanding (1 — x)°.
Gif) J Y@ (1—v¥dy=B (4, Zj
0 3

This integral can be evaluated using the symmetric property (given below) of
the beta function.

*After the name of a great mathematician and physicist L. Euler (1707 — 1783), who was a
member of St. Petersburg Academy of Sciences.

Beta and Gamma
Functions

NOTES
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Calculus—I1 Note that B (m, n) can be easily evaluated if at least one of m and n is a positive
integer.

Symmetry of Beta Function. B(m, n) =B, m).

NOTES Proof. By definition,

B(m, n) = Jl 1 (1—-x)"1dx, m>0,n>0
0

Changing x to 1 — x, we have
B(m, n) = J YAl [ (1 - o) de [ j “Flx) dx = j “fla-x dx]
0 0 0
= Jl (1 —x)m™ 1 a1 dx
0

= Jl 1 (1—x)""1de=B@mn, m).
0

Note. Integral of example (iif) above, can be written as

1
B(4,ZJ =B (Z,4J = j 2?1 - 23 dx
3 3 0

and can be easily integrated.

2 . :
Example 1. Express J (8 — x%) 13 dx in terms of a Beta function.
0

Sol. Let I= J 2 B — %) 18 dy ()
0
Put x° = 8z
_ 9,13 _2 o
x=2z and dx—gz dz

Also, whenx=0,z2=0;whenx=2,z=1
(1) becomes

1 2 2 o1
I= 8 —8z) 12 Z 228 (=818 Z 1—2) 13 5208 g
jo (88910 2 2% dz . jo (1= 2) 8 228 dz

b b
= % J‘Ol 1— x)71/3 23 dx |: J.a f(2)dz = J.a Fx) dx]
= % J'Ol 23 (1= x) 1B dy
= 1 B (__2+ 1,__1+ 1) = 1 B (l,z)
3 3 3 3 33

Example 2. Evaluate Jb x-—a)" 1T b-x)"Tdx, m>0n>0.
Sol. Put x=a + (b — a)z so that dx = (b —a) dz

Jb @x—a)y™!t b-x)"!dx

= Jl [(b-—a)z]" ' [b—a—-Ob—-a)z]"' b-a)dz
0

= G-t Lt (-9 de
0
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— (b _ a)m+n—1 J‘l xm—l (1 _ x)n—l dx
0

=b-a)™" . B(n, a).

Example 3. Show that

m-1 _ n-1 1
Jl w dx = ———— B(m, n).
0o (a+bx)™" (a+b)"a
Sol. Put x __Z
a+bx a+b.1
Differentiating w.r.t. x, we have
(a+bx).1—x.bdx: dz _ dx _ dz
(a + bx)? T oa+b (a+bx)? ala+b)

Also, whenx=0,z2=0;whenx=1,z=1.

1™t (1— )t 1 x ol 1-x nt 1
. - _dx= . d
.[ v -[0 a+bx a+bx (a + bx)? v

0 (a+bx)™™"

:Jl z ”“1(1—2)”-1 dz
ola+b a "ala+d)

[ X z = (a+bx=az+

a+bx a+b

x=

bxz

az

b-bz

= (a+b-bzx=az = =
a+
1-_ %
1-x a+b-bz a+b-bz-az
= = =
a+ bx o+ abz a® + ab — abz + abz
a+b-bz
_(a+b)(1-2) 1-2
T ala+b) o«

1
1 j 21—z tdz=

a" (a+b)™ Jo

Example 4. Show that

m-1
® X
——— dx=B(m,n), m>0,n>0.
-[0 (1+x)m+n ( )
Sol. Put ¥ =
1+x
= X = 2
To1-z
dx:(l—z).l—z’(—l)dz: dz2
1-2) 1-2)
1
Also, 1+x_1+1—z_1—z
Further, when x=0,2=0;
when x — o, z= lim = lim 1121

xow l4+x x> 14+

B(m,n)
(@a+b™.a"’

Beta and Gamma
Functions

NOTES
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2 m-1
J‘°° ™ d :J'l (1—2] dz
0

(1+ x)m+n 0 1 m+n (1_ 2)2
NOTES

= Jl 2" (1 -2 dz=B(m, n).
0

Remark. Result of the above example is also used in solving questions.
Example 5. Show that

m-1 1

+x™

1
j x—+ dx=B(m, n), m>0n=>0.
0o (1+x)™™"

o m-1
Sol. B@m, n) = j S
0 (1+x)m+n
1 m-1 o m-1
:jx_ x+j a7 dx ()
0 (1+x)™™" 1 (1+x)™"
o m-1
Considerj —dx
1 (1+ x)m+n
t
1
dx =— t_2 di
Also, whenx=1,t=1;whenx — o, >0
1 m-1
I m-1 0 (J
J x_dxzj t_(_i) di
1 (1+ x)m+n 1 ( 1)m+n t2
1+-—
t
0 n-1 1 n-1
1 (1+t)m+n 0 (1+t)m+n
1 n—-1
= j SN )
0 (1+ x)m+n
Using (2), (1) becomes
1 m-1 1 n-1 1 ,.m-1 n-1
B(m, ”/):J‘ x—dx+'|‘ x— , :J‘ &
0 (1+x)m+n 0 (1+x)m+n 0 (1+x)m+n

Example 6. If p, q are positive, show that

0 B(p,g+1 _B(p+1q)
q p

@) B(p,q) =B(p +1,q)+BD, q + 1).

Sol. (i) B, q+ 1)* = jol w1 (1 -7 dx

*To change a Beta function to integral decrease each part by 1, i.e.,

B, q) = J'Ol @1 (1= 07! da.
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Integrating by parts taking (1 — x)? as first function, we have

[© on comparing the two integrals B(p, ¢ + 1) and B(p + 1, q), we find that
power of 1 —x is to be decreased by 1]

1
B, ¢+ 1) = {(1—x>qﬁ} - jl a1 —xy 2y
p 0 P

0
q (! q
:0+—j w(1-nrldi=L Bp+1,q
p P

B(p,g+1 _B(p+19q)
q p
1) RHS. =B@p+1,q9 +Bp q+1)

1 1
= J (1 —x)7 1 dx + J (1 —x)? dx
0 0
1
=j [ (1 — )% + 11 — )7 dx
0
= Jl @l (1—02! (v+ 1—x) dv
0

_ jl 11— 99! dx = B, q) = LILS.
0

If m, n are positive integers, prove that

(m-D!(n-1!
B = -t
1
Proof. B(m, n) = j 1 (1= d.
0

Integrating by parts (taking x™ ! as first function), we have

-n -n

n 1 n
B(m, "/) = |:.’)Cm_1 (1_ .’)C) :| — _[01 (m _ 1) xm—z (1— x) dx
0

_1 1
= 1J "2 (1 —x)"dx
n Jo

- Bom, )= ""L Bm—1,n+ 1)
n

Changing m tom — 1 and n ton + 1, we have

)
Bm—1:n+1)=""2Bm-2n+2
n+1

Similarly, Ben — 2. n+ 2 = =3 Bon—3.n +3)
n+2
Repeating the above process m — 2 times, we have
1
B2, n+m-2)=————B(,n+m-1)
n+m-2
Multiplying the above m — 1 equations, we have
(m-1)(m-2)...... 1
nn+1...... (n+m-2)

B(m, n) = B, n+m-1)

(D

Beta and Gamma

Functions

NOTES
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Calculus—II 1
But, Bl,n+m-1)= J‘ X (1 = p)mm1 gy
0

1
— J‘ (1 _ x)n+m—2 dx
0

B (l_x)n+m—1 1_ 1
| -(n+m-1 0_n+m—1

Substituting this value in (1), we have

m-D(m-2)...... 1

NOTES

Blm, n) = nn+1)..... n+m-2(n+m-1 @
B (m-1)!
C(n+m-Dn+m-2)...... (n+Dn
B m-D!'(n-1!
C(n+m-Dn+m-2)...... n+Dn.(n-1!
_m-Dlr-D!
 (n+m-1D!
Cor. Putting m = 1, in the above result, we have
B(1,n) = l
n
EXERCISE 7.1
1. Express in terms of Beta functions :
2
Q) Jl L (i) j ? 8@ )18 dy
01— 0
- x2 ; ! -1 2ym—1
() -[0 5 dx @v) -[0 11— x2)yml dx
B j P em (07— xay di. (K.U. BCA (1) 2001)
0

[Hint. ¢) Put x° =z @#1) Put x° = 8z (v) Put x* = p?z.]
2. Prove that ja (@ —x)m 1 x1 dx = am1 B(m, n).
0
3. Using the property B(m, n) = B(n, m), evaluate

1
j (1 —x)*? dx.
0

/2
4. Show that B(m, n) =2 j sin2m-1 0 cos 2*°1 0 dB, m, n being positive integers.
0

1
[Hint. B(m, n) = j (1 — 2 da
0
Put x/; =sin 0, ete.]
1,m-1._ \n-1
5. Show that J. d A-x) dx = B(m, n) .
0 (a+x)m" a(1+ a)™

[Hint. See example 3.]

136  Self-Instructional Material



6. Show that

o .m—1 n-1
@) J %dxz 2B(m, n), m>0,n>0
0 (A+x)™"

o ,m-1_ _n-1
(ii)j X 7Y gx=0,m>0,n>0.
0o (Q+x)™™n

GAMMA FUNCTION

We have seen in Example 11 of chapter 10, that the integral Jm ¥l e dx is
0
convergent for each positive n. The integral Jm ¥ e® dx for n > 0, is obviously a
0
function of n and is called a Gamma function of n. It is denoted by T'(n), i.e.,

I'n) = Jm ¥ le*dx, V n>0.
0

Gamma function is also called the Second Eulertan Integral.
For example,

@) J:o x° e dx is a Gamma function I'(6)

) Jm ¥ e dx is a Gamma function T’ (g)
0

Recurrence Formula for Gamma Function I'(n). 7o prove that T'(n) = — 1)
I'(n— 1), whenn > 1.

Proof. By definition,

C(n) = Jm X e d.

0
Integrating by parts,
-x |7 o -x
. —J (n-Dx" 2% gy
-1 0 -1
0
xn—l -
=—|lim —-0|+@®n-1) J x" 2 e dx
x> g 0
o xn—l
=(n-1) J x"2 e dx { lim =0forn>0
0 X @
=m— DI —1)
Thus, r'm)=m0—-1Hr'n-1).

Note. I' (n) > 0 always.
Cor. If n is a positive integer, then T(n) =(n - 1) /.
Proof. rm)y=m-1)Trmn-1)

Changingnton—1,n-2, ... , successively n — 1 times.

Beta and Gamma

Functions

NOTES

Self-Instructional Material

137



Calculus—II

NOTES

138  Self-Instructional Material

'm-—1)=0-2)T(n-2)
'm—-2)=m-3)T(n-3)
r@)=1.1x1)
Multiplying, we have
IF'my=m-Dn-2)...... 1.7(1)

But, r() = j -

xlle~dx= j e dx
0

0

t
= lim erdy=Ilim —[e!-1]=1
t— o JO t— oo

Hence from (1), Tm)=n—-1)!
For example, r4=3=6.

Relation between Beta and Gamma Functions. To prove that

I'im)T'(n)

B(m, n)= Tmtn) where m > 0, n > 0.

Proof. To prove the given relation, we first prove

I'(n) =z" Jm a1 e dyx
0

Putting x =az in T'(n) = Jm ¥ ! e dx, we have
0

I'(n) = Jm (@)"le*adz=a" Jm 2l e dz
0 0
Replacing z by «x,
=q” J‘m xnfl o dx
0
Replacing a by z, we have

'n)=z" Jm a1l e dyx
0

= I'n) = J X2 e dx
0

Multiplying both sides by e 2", we have
F(”/) e ”? mel - Jaoo xn—l 2n+m71 e,z(1+x) dx

0
Integrating both sides w.r.t. z between the limits O to o, we have

“ —z om—1 — “ “ n-1 _n+tm-1 -z(1+x)
Jo Gm) .e?z" 1 dz .[o [ -[0 "1z e dx] dz

C(n) J‘O o= z2m1 z = J‘m -1 |:J.°°zn+m—1 g 21tx) dz] dx.
0 0

.. (D)

.. (D)

[Put z(1 + x) =y, etc. on R.H.S.]



oo o m+n-1 -y
= T'@)I'(m) = .[o xv! [-[0 y(1+—)em+ndy} dx
X

m xn—l ° +n-1 -y
— [ [y le Y dy | d
-[0 RESEE UO y e y] dx

n-1

°° X
= J:) W [C(m + n)]dx

n-1

°° X
=I'm+n —dx
( ) 0 (1+x)m+n

=T'(m + n) B(m, n)

I n-1
( J _x B(m, n) Example 4 after 11.1.1]
0

(1+ x)m+n
Hence B@m, n) = w
I'(m+n)
Cor.1.T (3)=+n.
Proof. Substituting m = 4 and n = 1 in the relation

_ Fm)I'(n)

B@m, n) , we have
I'(m +n)
101y - r(re)
B(z, %) T
=K &P
= r&) =BG, 4

1
:j xil‘l (1_x)%‘1 dx
0

1 1
=| ——— dx
.[0 \/;,ll—x
Let x=sin20
dx =2 sin 0 cos 0 dO

Also, when x=0,0=0; when x=1, ng
from (1),
/2
T (%)]2:"% 1 . 2sin q cos q dq
sinG\/l—sin2 0

z'l‘n/22.d6=2(£)=n
0 2
= rG; = .

Cor. 2. Jm e"C2 dx = —.
0

Proof. Let I= e ¥ dx
0
Put 2=z
= 2xdx=dz = dx:%: 1 dz

Beta and Gamma
Functions

NOTES
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Also, when x=0,z=0; whenx — o, 2 >
IZJ‘M -z j dz
o © zf 2
_1 mz z e?dz
2 Jo
=ir-Ll+p=1ird=L1Jn (By Cor. 1)
0
Cor. 3. J e x:—n
— o 2

One can prove the result by substituting x = — z.

Cor. 4. Jm e dx =Jr.

For,

Jmexdx 2J = 2J_ N
[ -+ if (f) x is an even function of x, then Jaf(x) dx =2 J:f(x) dx]

1

Example 7. Show that J:o Jx e dx= 3

dz

Sol. Put x° = 2* so that dx = —

Also, when x =0, 2=0; when x — o, 2 — oo,

J:o x e ™ dxzj: x/;e_zﬁ

D N Y 1/3y-3/2 =
3j0 x dz = j @) 2
D S a7 S PN | 1y
== —Iry=2 k)=
3j0z ST@=gn (v T(&)=+n)
Example 8. Show that B(m+2,n—2): mm + 1) )
B(m,n) (n-Dn-2)

I'm+2)I'(n - 2)
I'm+2+n-2)
I'(m)I'(n)
I'm+n)

_Im+2T(n-2) _
rmIT(n)

Bm+2,n-2) _
B(m, n) B

Sol.

(m+ DmI(m)I'(n - 2)
I'(m)(n — D(n -2)I'(n - 2)
[- T()=@m—1) Dn—1)]

_ mm+1)
(n-Dn-2)
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*In an integral of the type J.

x" e @ dx, put f(x) = z.



Example 9. Fvaluate

@) J:o e x32 dx ) ,[01 x* (1 -x)°%dx

Sol. (i) Putting 4x =y, we have dx = % dy.

Also, when x =0, y:0'whenx—>°°,y—>°°

J‘O o4 4302y = — = J‘ /21 gy

32 \2

(i) Ljﬁa—m%mzma@
_ TG4 4130 1

re 8! 280
(i) Putting x = 2y so that dx = 2dy
Also, whenx=0,y=0;whenx=2,y=1

jzﬁr;—4fj y2(1 —y) 12 dy

Llﬁaiégérﬁ};iﬁi

Beta and Gamma
Functions

NOTES
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Example 10. Fvaluate

x8(1-«° x*(1+x%)
ol 7 a+m% d @ J, = 1+ 0"
. e x%(1-x%)
Sol. (7) = J:) —(1+x)24 x
I xS o x14
g
-[0 (1+x)* * J‘0 (1+x)% dx
9-1 15-1

zjmx—dx—rx—
0 (1+x)9+15 0 (1+x)15+9

=B(9, 15) —B(15,9) =0 [

oo A4 5
(ii) =] x Atx)

0 (1+x)P ’
4 9

< X < X
= —— _—dx+| ——d

-[0 (1+2)15 * —[0 1+x)% v
B J_m ! dx+Jm x10-1
- 0 (1+x)5+10 0 (1+x)10+5
= B(5, 10) + B(10, 5) = 2B(5, 10)

_2I(5).1(10)  2.41.9! 1
5+ 10) 14! 5005

2
F@ 531
2 2 2 2

B@m, n) =

dx

B(n, m)]
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n/2
To evaluate J sin? xcos?xdx,p>-1,q>- 1
0

Proof. Put sin? x = y so that 2 sin x cos x dx = dy.

NOTES Also, cos ¥ =,1-sin?x =,/1-y
d,
dx = 4

__dy
2 sin x cos x _2\/;1/1—y

Also,wheanO,yZO;whenx:g,y=1

Therefore,
J‘n/z sin? x cos? x dx = jl )P (J1-y)° 2 dy
. k vde= | s
10 21 -1
— 2 (1-y) 2
Zjoy 1- dy
_lB(p 1+Lq 1+1j
2 2
p+1 g+1
r r
_lB(lHl q+1)_1 2 ) ( 2 )
2 2 2 2 1_,(p+1+q+1)
2 2
Thus,

n/2
J sin® x cos? x dx =
0 2 ( +4
2 2

Example 11. Evaluate

/2 /2
@) Jn sin® x cos®’? dx ) Jn sin’ x dx.
0 0
/2
Sol. (i) Jn sin® x cos™? dx (Here p=3,q= é)
0 2
5
—+1
r (3 ; 1) ri? 2 7 7
rer () 1.7+
_ - 4) - 4) _ 8
g1 541 2r(15) 2.117r(7) m
or|3+1. ZT 4 44 \4

/2 /2
@i1) J‘n sin® x dx = Jn sin® x cos® x dx (Here p =5, ¢ =0)
0 0

5+1 0+1
_F( 2 ]r( 2 J:F<3>F<%>

21ﬂ(5+1+0+1) 21“(7)
2 2 2
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B 21T(3) 8
_zééi (1)_15‘
2°2°2 |2

Duplication Formula. 7o prove that

1) Vn
r(m)r(m+ 2) ST I'(2m).

Proof. We know
B(m, m) = Jl (1 —x)" 1 dx
0

Putting x = sin? 0, we have

dx =2 sin 0 cos 0 dO
Also, when x=0,0=0; when x=1, ng
(1) becomes

/2 . . R
B(m, m) = J (sin? 8)™ ! (1 —sin? )1 2 sin 0 cos O dO
0

2 /2 : 2m-1
=2 jn (sin 0 cos 0)271 dp = 2 J‘” (smzze) &
0 0

2 n/2
= W J‘O Sln2m71 26 d@

Putting 26 = ¢, we have db = 1 do¢.

Also, when 6=0,0=0;when6=—,0=mn

n
2
from (2),

B@m, m) = sin?m1
0

22m - sin?”1 ¢ . cos® ¢ do
0

2m-1+1 0+1
2 F( 2 )F( 2 )_ 1 Tmr@)

(1)

(2

il
J:) sin? 1o dd (- sin?m ! (- ¢) =sin?™1 ¢)
.

= Sam-1 _ T oam-1 1

2 21ﬂ(Zm 1+1+0+1) 2 L(m+3)
2 2

Fm)T(m) 1 TmI(Q)

Fm+m) 22" I(m+1)

Cancelling T'(m) and using T (3) = /n, we have

I'(m) Jn

r@2m) 2% 1 r(m+)

Jn T(@2m)

22171—1

= Lm) T(m+34)=

Beta and Gamma
Functions

NOTES
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1.

Example 12. Prove that

nm’!

24m—1

B(m, m). B (m +l, m +lj
2 2

Sol. LHS.=B@m, m). Bm+ L1, m+ %)
_ I(m)I'(m) Tim+3)Cim+3)
rem) F(m+%+m+%)
D) en + H)°
T@2m).TCm+1)
_ [em)rom + )1 -
'(2m).2m '(2m) )
_[Jnrem) ’ 1
g2m-1 " 2m [[(2m))?
_ i nm™
T gim2 g = gdm-1"
EXERCISE 7.2
Show that

Jr

@) Jm XPertdx=6
0

Giii) J' Tavt e dx=T (éJ
0 4

1

(vr) js L =n
60 0 \/3x — x?
1
Fr(s)
sr (ﬁj
6

1
Express j x™ (1 — x™P dx in terms of the Beta function and hence evaluate
0

l

(1) j \/;e_x3 dx =1
0 3

45

(tv) Jm x8 e dx =
0

1
(v) -[0 2 (1-x)° dx =

(Y dx
(vir) J. =
0 \/1 -3

X (1 — x%)10 dx.

Prove that I'(n + 1) = n I'(n), where n > 0.
Prove that j e xn1 gy = L) , where a >0, n>0.
0 a

[Hint. Put ax =z.]

() = (m — DI — 1]

[by Duplication Formula]



5. (1) Prove that j X e_“2x2 dx = _1 r (n_—l—l}
0 2¢7*1 2

had 2.2
Hence show that J e dx= ﬂ
— e a

[Hint. Put a?x® =z.]

(i1) Prove that J. e " dy = 2ﬂ ,a>0.
0

a
1 ,m-1._ ,\n-1
6. Show that J‘ (-2 _ rmre)
0 (@ + x)™t" a® 1+a)™ T'(m +n)
[Hint. See Example 3.]
7. Show that j X - n,_
0 \/1_’5” nF(1+lj
n 2
Hint. Put x" = z and use B(m, n) = w
I'(m + n)

Bp,g+1D _Blp+19 _Bpg

8. (1) Prove that ,p>0,9g>0.

q p ptgq
(1) Prove that B(m+1,n): m ,m>0,n>0.
B(m, n) m+n
9. (1) Show that
n+1
/2 ) T F( 2 j
j sin™ 0 dO = — ,n>—1.
0 2 (n+2j
r
2

n/2 /2
(ii) Show that J' J5in 6 do x J' L
0 0

oo a
10. Showthatj x_dx:—F(a+1)1 Jifa>1.
0 a” (log a)™*
[Hint. a* = e*log ¢ Put x log a = z.]

11. Prove that B(m, m) = 21-2m B(m, %)‘ [See solution of Duplication formula]

Beta and Gamma

Functions

NOTES
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NOTES

8. VOLUMES AND SURFACES OF
SOLIDS OF REVOLUTION

STRUCTURE

Introduction

Volume Formulae for the Cartesian Equations
Volume Formulae for Polar Equations
Surfaces of the Solids of Revolution
Revolution About Any Axis

Volume between Two Solids

Revolution About Any Axis

Theorems of Pappus and Guldin

INTRODUCTION

A plane area when made to revolve about a fixed straight line lying in its own
plane, generates a solid of revolution and its boundary generates a surface of
revolution. The straight line about which the plane area is rotated is called the axis
of revolution.

Every section of such a solid by a plane perpendicular to the axis of revolution is
a circle having its centre on the axis.

For example (a) A right circular cylinder is generated by the revolution of a
rectangle about one of its sides.

S~
SN

(@) (b) (©)

(b) A right circular cone is generated by the revolution of a right-angled triangle
about its base.

(¢) A sphere is generated when a semi-circle is rotated about its bounding
diameter.
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VOLUME FORMULAE FOR THE CARTESIAN EQUATIONS

If y = f(x) be continuous, finite and a single valued function of x in the interval
[a, b] where a and b are finite and a < b, then the volume of solid generated by revolution
about x-axis, of the area bounded by the curve y = f(x), the x-axis and the bounded

b
ordinates x =a,x=bis J ny? dx.
a

Let AB be the curve y = f(x) and CA, DB be the two ordinates x = a, x = b
respectively.

Let P (x, y) be any point on the curve AB.

Draw PM L OX. .. OM=x, PM=y.

Let V denote the volume of the solid generated by the revolution about x-axis of
the area ACMP.

As x increases i.e. PM moves towards the right, V also increases.

V is a function of x.

Let Q(x + dx, y + 8y) be another point on the curve in the immediate neighbourhood
of P and NQ its ordinate.

Then the volume of the solid generated by the revolution about the x-axis of the
area PMNQ is 8V.

Complete the rectangle PRQS. Y4 B

Then the volume of the solid generated by the
revolution of the area PMNQ lies between the volumes
of the circular cylinders generated by the rectangles
PMNR and SMNQ i.e. 8V lies between my? dx and
n(y + dy)? dx.

or my? §x < 8V < m(y + dy)? S« R
or my? < §V/8x < m(y + Sy)? o D X
Since y is a continuous function. .. 8y — 0 as dx — 0.

Taking limits as dx — 0

Lt v lies between my? and a quantity which — my?

5 —0 Ox
av _ e
dx Y

Jb ny? dx = J‘j % dx=[V]’

= (volume V when x = b) — (volume V when x = a)
=volume generated by the revolution of the area ACDB - 0

Hence the volume of the solid generated by the revolution of the area ACDB

b

about the x-axis is J ny? dx.
a

Note. In the above investigation, we observe that the ordinate increases continuously.
The above result is still true when the ordinate decreases continuously or when the ordinate
increases in some parts and decreases in the other parts. It is also assumed that curve does not
cross the x axis, i.e. the axis of revolution.
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Calculus—I1 Cor. 1. Revolution about y-axis. The volume of the solid generated by revolution
about the y-axis of the area bounded by the curve x = f(y), the y-axis and the abscissae
y=a,y=bis

b
NOTES [ mx*ay.

a
The result follows immediately on interchanging x and y in the above proposition.

Cor. 2. Volume formulae for parametric equations. If x = /(1) and y = o(t)
are the parametric equations of a curve, then the volume of the solid generated by
revolving the area about x-axis is

dx
J‘ nyz E . dt,

the limits of integration being so taken as to cover the whole area revolved and volume
of the solid formed by revolving the area about y-axis is

j nx> ﬂ .dt,
dt
limits of integration being so taken as to cover the whole area rotated.
Note. An important observation. (a) If the generating curve is symmetrical about the
x-axis, then the volume generated by the revolution of the area about the x-axis is the same as
the volume generated by the revolution of its upper (or lower) half area.

Thus, the volume generated by the area DCOAB =vol. generated by the area OABM or
OCDM.

YA
YA

O

e}
[
=
XV
<V

(b) If the curve is symmetrical about the y-axis and the same curve be made to revolve
about the x-axis (the curve lying on one side of x-axis), then the volume generated

= 2 X volume generated by the portion OAB lying in the first quadrant.

VOLUME FORMULAE FOR POLAR EQUATIONS

The volume of the solid generated by the revolution of the area bounded by the
curve r = f(6) and the radii vectors 0 =a, 6 = :

B
(1) about the initial line OX (6 = 0) = J gnr3 sin 0 d6.
o

B
(i) about the line OY (9 = EJ = J 2 nr® cos 0 do.
2 o 3

The proofs of these formulae are beyond the scope of this book.
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Note. The volume formulae of cartesian curves can also be used for polar curves by
converting the polar equation to cartesian equation by using the relations x = r cos 6 and
y=rsin 0.

(i.e. r?=x%+ yz, cos 0 =~ and sin 0 =l).
r r
Example 1. Find the volume of the prolate spheroid generated by the revolution
2 2

of the ellipse x_2 +2_ = 1 about the x-axis.
a

b_2
2 2
Sol. The equation of the ellipse is pel + W =1
2 2 2 .2 b2
y _ X _a —-x . 99 9 .2
or b_2_1_a_2_a—2 Syt = a2 (a —x) (1)

Since the ellipse is symmetrical about the Y 4
X-axis

.. the required volume = 2 X volume
generated by revolving the area OABO about x-axis. b
[We are multiplying by 2 because of '

h
B\
symmetry about y-axis. See Note Cor. 2, Art. 2.] A 0 a / (a, 0) );(
Now for the area OABO, x varies from O to a. |

Required volume = 2 Joa ny? dx o
ap? 2
=2n J:) a—z(a —-x%)dx [+ of (D]
2 37% 2 3 2 3
= an; a?x-X =2nb—2 ot -2 =2nb—2.zizinabz.
a 3 0 a 3 a 3 3

Note. Prolate and oblate spheroids. Defs. (i) The solid formed by the revolution of
the ellipse about the major axis is called a prolate spheroid and (i) the solid formed by the
revolution of the ellipse about the minor axis is called an oblate spheroid.

Example 2. Find the volume of a right circular cone of height h and radius a.
Or

Find the volume of the right circular cone formed by revolution of a right angled
triangle about a side which contains the right angle.

Sol. We know by example (b) Art. 1, A
that a right circular cone is generated by
the revolution of a right angled triangle a
AOCA about is base OC (taken as x-axis R -
here) o X M hiC x-axis

Let h be the height of the cone and
a be the radius of its circular base.

B
In AOMP, tan o= E:l
OM «

y=xtan o ..(1)
3

Required volume of the cone = J
=

ny?dx
0

Self-Instructional Material

Tolumes and Surfaces
of Solids of Revolution

NOTES

149



Calculus—II

NOTES

Putting y = x tan o from (1),

3 h
= .[0 nx®tan? o dx =7 tan? o .[0 x2 dx
3\ 1
—ntan?a | 2| == nh? tan? o .2
3 0 3

o _AC a
Again in right angled AOCA, tan o = oC &

..(3)
Putting this value of tan o from (3) in (2),

a1

Required volume of the cone = %nh3 7 = 3 na? h.

Example 3. Find the volumes formed by the
revolution of the loop of the curve y? (a +x) =x2 (3a — x),
about the x-axis.

X=—a

Sol. The equation of the curve is
yi(a + x) = ¥*(3a — x) (D
() The curve is symmetrical about the x-axis.

XV

71O 3a

(1) The curves passes the origin and the tangents

at the origin are y =+ /3 . x
Origin is a node.

1
1
1
1
1
1
1
!
! 7
i N\ | A4 A(3a, 0)
1
1
1
1
1
1
1
1
1
1
1

(i1) The curve meets the x-axis in points (0, 0) and (3a, 0). It meets the y-axis at
the origin only.

(tv) The curve has an asymptote x + a = 0, || to y-axis and there is no other
asymptote.

3a —

(©) From (1), y=x. X , when x <—a, or x > 3a, y is imaginary, .. the entire
curve lies between the lines x = — a and x = 3a.

Thus, the shape of curve as shown in the figure and for the upper half of its loop
x varies from 0 to 3a.

Required volume formed by the revolution of loop

3a 3a 42 _
:'[0 nyzdx:nj X ey (3a x)dx

0 a+Xx

dx

3¢ — 53 4+ 3ax?
Tc e —
0 xXx+a

3a 3
n'[ (—x2+4ax—4a2+4a de
0 x+a

[Dividing the Num. by the denominator]

I 3a
=7 |:Tx +2ax? — 4a’x + 4a® log (x + a):|
0
=1 [~ 9a® + 18a® — 12a® + 4a® log 4a — 4a® log a
=mna’ (— 3 + 4 log 4) = na®@8 log 2 — 3).
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Example 4. A basin is formed by the revolution of the curve x° = 64y (y > 0)

about the axis of y. If the depth of the basin is 8 inches, how many cubic inches of water
will it hold ?

Sol. The equation of the generating curve is x* = 64y (D)

The curve is symmetrical in opposite quadrants.

The shape of the curve is as shown in the figure by thick lines.

The height of basin is given to be 8 inches, so that when y =8, from (1),
x=64x8 x=8.

Hence A(8, 8) is point of the curve (1) at a height of 8 inches.

Thus, the basin is formed by the revolution of the arc OA about the y-axis where
Alis (8, 8).

Required volume

2 8 2/3 Y4
= [ metdy = [ 64 9% dy NS o
0 0 2 A, 8)
8 NS
= 16n j y2/3 dy \
0 \ 8"
8 \\
5/3 ~ | -
- YU _48 513 ol . X
16m . 5|75 n [(8) 0] \
3 0 \\\
_ 48m X 32 = 15367 cubic inches. '

Example 5. Find the volume generated by revoluving one arch of the cycloid
x=a®-sin0),y=a(l-cos0)about its base.

Sol. The equations of the cycloid are x = a (6 — sin 0), y = a (1 — cos 0).

For the first half of the cycloid in the first Ya
quadrant, 6 varies from 0 to 7. -
By Cor 2, Art. 2 required volume | 27 Al o~
n n i
=2J nyzdx=2J nyz%dﬁ \ ! B R
0=0 0 o 0l6=0 b-2r X
=2n J‘n a?(1-cos0)?. a(l—cos0)do
0
T 3 3 (" .2 3
— na? jo (1- cos 0)® d6 = 2na jo (2sin? 6/2)° do (1)
Putg:t © 0=20 and do=2di
When0=0,t=0
When 0 =m, (= g
Using (1)
Required volume = 2na® J‘n/z (2 sin? ¢)% 2dt
0
/2
=32 na® Jn sin® tdt =32 ma?. 5.3.1 A S %
0 6.4.2 2

Tolumes and Surfaces
of Solids of Revolution

NOTES
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Example 6. Find the volume of the solid obtained by revolving the cardioid
r=a(l — cos 0) aboul the initial line.

Sol. The equation of the curve is r = a(1 — cos 0).

The curve is symmetrical about the initial line B(a, /2)
and for its upper half 0 varies from 0 to .

By Art. 3, required volume
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Example 7. Find the volume of the solid obtained by revolving the lemniscate
r? =a? cos 20 about the initial line.
Sol. The curve r? = a? cos 20 is symmetrical about the initial line.
The curve consists of two equal loops.

The required volume, therefore is twice the volume generated by the revolution
of the half-loop OA about the initial line.

The equation of the curve is

12 =a? cos 20 YA
or r? = a2 (cos? 0 — sin? 0) 0 =n/4
2 2 2 .~
or r*=a’ (x_z - y_zj X
re r 0| ™\ A X
ie. rt=a? (¥ —y? g h
or (% +yH? = a* (¢ ~y?)

or y*+@2x¥%+a?)y?+@*—a*x)=0
It is a quadratic in y?
Solving for y?,

- (2x% +a?) ix/(sz +a?)? —4(x* - a®x?)
2

or yi= 1[- (2x% + a®) + /8a%x? + a*]
or yi= 1[ (2x% + a®) + /8a’x? + a*] (D

Negative sign before the radical on the right is rejected, because otherwise y? is
negative and hence y is imaginary.

y? =

For the half-loop OA, x varies from 0 to a.

Required volume

=2 Joa ny? dx
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a 2
=n jo —(2x2+a2)+2\/§a1/x2+% dx [From (1)]
2 a2 i
XalX +§ 8

2 3 2 . -1 X

=q|—-—x°—-a“x+2a+2 + sinh
T3 2 2 a
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2 a.3a
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—n|-24%- 3+—+
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log (2 J2 + 3):| [ sinh™t x = log (x + X2+ 1)]

— */—“ log (V2 + 1)2}
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{? 2 X2 log (V2 + 1):|
1
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EXERCISE 8.1

Find the volume generated by the revolution of an arc of the catenary y = ¢ cosh % about
c
the axis of x.

Find the volume generated by rotating about the y-axis the area bounded by the coordinate
axes and the graph of the curve y = cos x from x = 0 to x = n/2.

X

/2
[Hint. Volume = '[ w2 dy = '[ T2 d—ydx]
0

Let B be a number > 1. What is the volume of the solid generated by the area under the
curve y = e~ between 1 and B (the axis of revolution being the x-axis) ? Does the volume
approach a limit as B becomes large ? If so, what limit ?

The area of the parabola y? = 4ax lying between the vertex and the latus rectum is
revolved about the x-axis. Find the volume generated.

Or

Find the volume of the spindle formed by the revolution of a parabolic arc about the line
joining the vertex to one extremity of the latus rectum.

[Hint. We know that equation of latus rectum of the parabola y2 = 4axis x = a.
a 9 a x2 @ 9
Required volume = j my“ dx = j n.4ax dx =4an j x dx = 4amn 5| = =2ma”.
0 0 0
The part of the parabola y? = 4ax cut off by the latus rectum revolves about the tangent

at the vertex. Find the volume of the reel thus formed.

[Hint. Tangent at the vertex is y-axis.]
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10.

11.

12.

13.

14.

15.

16.

17.
18.

Find the volume of a sphere of radius a.

[ Hint. The equation of circle is x2 + y2 = a2,

@2 @ 2 .2
Volume of sphere = 2 J ny“ dx=2 J n(a® — x“) dx.
0 0

(1) Find the volume of the oblate spheroid formed by revolving the ellipse about minor
axis.

(i1) Find the volume of the solid generated by revolving the ellipse. x2 + 4y? = 4 about
y-axis.

Prove that the volume of the solid generated by the revolution of an ellipse round its

minor axis, is a mean proportional (i.e. Geometric Mean) between those generated by

the revolution of the ellipse and the auxiliary circle round the major axis.

[ Hint. Equation of auxiliary circle (a circle drawn on major axis as diameter) of the

2

i X 2
ellipse
(12

2
y—:lisx2+y2=a .

b2
The loop of the curve 2ay? = x(x — a)? revolves about x-axis, find the volume of the solid so
generated.

2,

y2

Find the volume of the solid obtained by revolving the loop of the curve a
= x2(2a — x)(x — a) about x-axis.

2 [
(a) Find the volume formed by revolution of the loop of the curve y% = M about
a+x
the x-axis.
(b) Find the volume of the solid produced by the revolution of the loop of the

2
2 (a+x .
curve y2 = # about the axis of x.
a-x
Find the volume of the solid generated by the revolution of the area between the
curve xy> = 4a’(2a — x) and its asymptote about the asymptote.

(a) Find the volume of the solid formed by the revolution of the cycloid x = a(® + sin 0),
y=a(l + cos 0), about its base.

[Hint. Base of the cycloid is x-axis.]

(b) Find the volume of the solid formed by revolution of the cycloid x = a(® + sin 0),
y=a (1 —cos 0) about the tangent at the vertex.
[Hint. Tangent at the vertex is x-axis.]
Find the volume of the solid generated by revolving the curve x*? + y3 = g2/
(i.e. x =a cos® t, y = a sin® 1) about x-axis.

Prove that the volume of the solid generated by the revolution of the tractrix
t . .

x=acosl+ % log tan? Y y =a sin t about its asymptote equals half that of a sphere of

radius a.

Find the volume of the solid generated by revolving the loop of the curve x=12,y=1— % 3

about x-axis.

Find the volume of the solid generated by revolution of r =2a cos 6 about the initial line.

The cardioid r = a(1 + cos 0) revolves about the initial line. Find the volume of the solid
generated.



Tolumes and Surfaces

19. The arc of the cardioid r = a(l + cos 0) specified by — g <0< — is rotated about the line of Solids of Revolution

NE]

.5
6 =0, prove that the volume generated is 2 na®.

20. Show that the volume of the solid formed by the revolution of the curve r=a+ b cos 6 (a>b) NOTES

about the initial line is % 7 a(a? + b?).

21. Find the volume of the solid generated by revolving the curve r? = a? cos 20 about the line
6 =m/2.

n/4 9
[Hint. V=2 j 3 7 13 cos O dO, where r= \/a2 cos 20 =a\/1—2 sinZ 9.
0

Now to integrate, put ﬁ sin 6 = sin ¢.]

Answers
2 9 b
1 {“L (2x + ¢ sinh _xﬂ 2. n(n - 2)
4 c
a
3. T2, 4. 2 na® 5. % s
2 2e 5
4 4 1
6. —ma® 7. () = na’b (ii) 16n
3 3 3
3 3
9, @ 10, 23m@
24 60
2 2
11. (@) 2na® |:10g 2 - E} (b) 2ma® |:10g 2 - E}
12. 4n2a® 13. (a) 5n%a® (b) m2a’
14, 32 16. 3% 17. & o
105 4 3
2 3
18. S 21. L4
3 42

SURFACES OF THE SOLIDS OF REVOLUTION

The area of the surface of the solid generated by the revolution about x-axis of the
area bounded by the curve y = f(x), the x-axis and the ordinates

. x=b
x=a,x=b,zsj 2ny ds
' x=a YA

where s is the length of the arc of curve measured
from a fixed point on it to any point (x, y). B

Let AB be the curve y = f(x) and CA, BD the
ordinates x = a, x = b. Let P(x, y) be any point on
the curve and let the arc AP be s. Draw PM 1 OX.

If S denotes the curved surface of the solid
generated by the revolution of the area ACMP
about the x-axis, then clearly S is a function of s.

D X
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Calculus-I1 Let Q(x + 8x, ¥ + 8y) be a point on the curve in the neighbourhood of P. Draw
QN 1 OX, and let the arc AQ be s + 8s, so that arc PQ = 8s.

The curved surface of the solid generated by the revolution of the area PMNQ
about the x-axis is 8S. Draw PR and QS parallel to x-axis and each equal in length to
NOTES the arc PQ i.e., ds.

Then it may be taken as an axiom that the curved surface of the solid generated
by the revolution of the area PMNQ lies between the curved surfaces of the right
circular cylinders whose base radii are MP, NQ and heights are PR, QS.

dS lies between 2my 8s and 2n(y + dy) ds
or 2my 8s < 8S < 21 (y + dy) 8s or 2ny<88—s<2n(y+8y)‘
S

Since y = f(x) is continuous, .. asdx— 0, dy also — 0.
Proceeding to the imit as dx — 0 (.. 8y — 0),
_ = 2ny

ds
(1)

Jx:b 2ny ds = Jx:b %d8=[8]x:b

x=a — x=a

= (value of S when x = b) — (value of S when x = a)
= curved surface of the solid generated by the revolution of the area ABCD — 0.
Surface area of the solid generated by the revolution of the area ACDB
= Jx - 2my ds.

xXx=a
Note 1. The above result has been proved for the case when the ordinate increases
continuously. It is equally true in case, where the ordinate decreases continuously. It is also
assumed that the curve does not cross the x-axis i.e., the axis of revolution.

Cor. From (1), S = j 2y ds.

Practical forms of the surface formula
(1) Cartesian form [for the curve y = f(x)]

_ ds ds dy )’
S—J‘2nyadx, where ax 1+(E) .

(11) Parametric form [for the curve x = f(t), y = F(t)]

2 2
S=j2nyﬁdt, where ds _ |(dx + dy .
dt dt dt dt

(1i1) Polar form [for the curve r = f(0)]

_ ds
S= j 2ny£ do, where

6 and 35 |p2 +(drj2
=rsimbovoand [ _— = e .
Y do do
Note 2. Interchanging x and y in the above formula, we see that the curved surface of
the solid generated by the revolution about y-axis of the area bounded by the curve x = f(y), y-
y=d
axis, and abscissae y=c¢, y =d is J 2mx ds.
y=c
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Example 1. Find the area of the surface formed by the revolution of y° = 4ax
about the x-axis, by the arc from the vertex to one end of latus rectum

Sol. The equation of the parabola is y

Tolumes and Surfaces

of Solids of Revolution
2 = 4ax.
d d 9 Ya
Differentiating, we get 2y— =4a or y 2 L NOTES
y
dy , 0 >
V dx s X
= ’1 + - y?=4ax) L
4ax
_ fx +a
x

For the arc from the vertex O to L, the end of the latus rectum x varies from O to a
a

Required surface = j 21y ds
0

—dx [Practical form (1)]
dx

=2n J:)a Vdax .W/x-i-a dx=47‘tx/EJ.0a (x+a)"? dx
x

(x+a)3/2 a
=47 7
Ja 3/2

— 8?75 ﬁ [(2(1)3/2 _ 03/2]

0

= gnaz (22 - 1).

Example 2. Prove that the surface generated by revolution of the tractrix
xX=acost+ %logtan2—

, ¥y =a sin t about its asymptote is equal to the surface of a
sphere of radius a.
Sol. The equations of the curve are
x=acost+glogtan2izacost+alogtan£} (D
2 2 2
y=asin L.

The curve (1) is symmetrical about both the axes and its asymptote is y =0, i.e
X-axis.

d. . 1 .
From (1), d—xZ—asmt+a‘ tseczé.EZ—asmt+ ? -
t tanE 2sin — cos —
.2 2
— asini+ .a =a(1 §1n t):aco.s t
s ¢ s ¢ sin ¢
and dy =acost
2 2 2 4
d d d cos™ t
dt dt dt sin” ¢
_ |a®cos® t(cos® t +sin®t) acost
sin? ¢

sin ¢
For the curve in the second quadrant ¢ varies from 0 to 7/2
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NOTES

ds

dt
dt

/2
Required surface = 2 Jo 21y

n/2 . cost
=4n'[ asmt.a, dt
0 sin ¢

n/2
= Ana? J costdt
0

/2
0

=4na? (1 - 0) = 4na?

= 4na? [sin t]

[Practical Form (ii)]

= Surface of a sphere of radius a.

Example 3. The arc of the cardioid r =a(1 + cos 0)
included between — /2 < 0 < /2 is rotated aboutl line
0 = n/2. Find the area of the surface generated.

Sol. Equation of cardioid is r = a (1 + cos 0)

YA
t=n/2/(0, a)
t=0 t=mn
0 X
(0,-a)

The area OCAB (shown shaded in the figure) revolves about the line 6 = /2 i.e.,
y-axis. Also the curve is symmetrical about the initial line or x- axis.

Required surface area Y4
= 2 X surface generated by revolution of B
. B|0=m/2
arc AB about y-axis.
/2
=2J“ 21 L5 o e A
0 do 6] 0=0 X
(See Note 2, Art. 4)
From (1), % = _ g <in 0 c
do
2
s _ 2y (ﬂj = \/a2 (1+ cos 0)? + a2 sin? 0
do do

=a ,/2(1+cos0) =a.2cos 6/2=2acos 6/2 and x=r cos 6.

/2
Now from (2), we have required surface area = 471 J

n/2
=4n J rcos 0. 2a cos 0/2 dO
0

xﬁde
do

/2
=g Jn a(l + cos 0) . cos 0. 2a cos 6/2 d6
0

/2
=8n a? J‘n (1 + cos 0) cos 0 . cos 6/2 dO
0

/2
- 8n a2j“ (2 — 2 sin2 0/2)(1 — 2 sin? 0/2) . cos 6/2 dO
0

( cos 0=1-2sin> g)

/2
= 16ma? j " (1= sin2 0/2) (1 — 2 sin? 6/2) . cos 6/2 dO
0
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10.

/2
- 16na® j [1— 3 sin? 6/2 + 2 sin* 0/2] cos 6/2 db
0

[Put sin 9 =t, so that 1 cos 9 d0 =dt and
2 2 2

When9=0,t=0;when9=g;t:%}
1/+/2
1/V2 945
= 16ma® j (1 — 3% + 2t*) 2dt = 32na? [t —¢3 +%]
0
0

V2 242 5 442
20-10+2

2042

2
]:32na2x 12 _96ma

= 32na? .
[ 2042 542

EXERCISE 8.2

. . x
Find the surface generated by the revolution of an arc of the catenary y = ¢ cosh — about
c
the axis of x.

Find the area of the surface formed by revolution of y? = 4ax about y-axis by the arc from
the vertex to x = %.

Find the surface of a sphere of radius a.
Or

2 is revolved about x-axis. Find the area of the sphere generated.

The circle x> + y? = a

Find the area of the surface generated by rotating about x-axis the arc of the curve y = x?
between x=0and x=1.

Find the surface of the right circular cone formed by the revolution of a right-angled
triangle about a side which contains the right angle.

Find the surface of the solid generated by the revolution of the astroid x%? + y*3 = o2/
or x=acos’ {, y = a sin® { about the x-axis.

Find the surface area of the solid generated by revolving the cycloid :

(@) x=a (®—sin 0), y = a(l — cos 0) about the x-axis.

(b) x=a(® + sin 0), y = a(l — cos 0) about the tangent at the vertex.

[Hint. Tangent at the vertex is x-axis.]

(¢) Find the area of the curved surface generated by the revolution of the cycloid
x=a( + sin 0), y = a(l — cos 0) about its base.

Find the surface of the solid generated by revolving the loop of the curve x =12, y=1— %

13 about x-axis.

Find the area of the surface of revolution formed by revolving the curve r = 2a cos 6
about the initial line.

(@) The curve r=a(l + cos 0) revolves about the initial line. Find the surface of the figure
so formed.

(b) Find the surface of the solid generated by the revolution of the cardioid r = a(1 — cos 6)
about the initial line.
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Calculus—II 11. Find the surface of the solid generated by the revolution of the lemniscate r? = a? cos 20
about the initial line.

12. The part of the parabola y? = 4ax cut off by the latus rectum revolves about the tangent
at the vertex. Find the curved surface of the reel thus generated.

NOTES 13. Prove that the surface of the solid obtained by revolving the ellipse b%x? + a?y? = a?b?
1 . . . .

about x-axis is 27 ab { 1-¢® += sin™? e:', where e is the eccentricity of the ellipse.
e

14. Show that the surface of the spherical zone contained between two parallel planes is
2nah, where ais the radius of the sphere and h is the distance between parallel planes.

15. A quadrant of a circle of radius a revolves round its chord. Find the area of the surface of
the spindle generated.

Answers
2
1

1. nc{b—a+£sinh2—b—£sinh2—a} 2.ﬂ[3£—8.log«/§+—}

2 c 2 c 16 2
3. 4ma? 1. 2—”7 (10410 - 1)
5. mrl 6. 12 na? 7. (@) 64 na’ ®) 32 na® (c) 32 na’

5 3 3 3

8. 3m 9. 4ma> 10. (a) % na? ®) % na?

11. 4na? [1—%} 12. ma? [34/2 —log (W2 + 1] 15. 22 ma? (1— g}

REVOLUTION ABOUT ANY AXIS

The volume of the solid generated by the revolution, about any axis CD, of the
area bounded by the curve AB, the axis CD and the perpendiculars AC, BD, on the axis
1S

(0)))
j © (PM)? d(OM)
ocC

where O is a fixed point on the axis CD, and PM is Y4
perpendicular from any point P of the curve AB on
the axis CD.

Take the fixed point O on CD as origin ; and
OCD the axis of revolution as the x-axis, and OY,
perpendicular to it as the y-axis.

Let the co-ordinates of P be (x, y), so that OM g
=x, PM=y.

IfOC=aand OD =b, then the required volume

>

----9f
xXv

b 9 OD
= j ny? dx = joc 2(PM)2 d(OM).

a
Example 1. Show that the volume of the solid generated by the revolution of the

curve (a — x)y? = a®x about its asymptote is L n’a’.

Sol. The equation of the curve is (a — x)y? = a?x LD
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The curve is symmetrical about the x-axis and by Y4
equating to zero the co-efficient of the highest power of y the

asymptote parallel to y-axis is (x,y)
a-x=0orx=a g
Let P(x, ¥) be any point on the curve and PM, the y

Tolumes and Surfaces

perpendicular on the asymptote (the axis of revolution), the o
PM =a —x, and AM =y, ON = x ; A being the point of
intersection of the asymptote with the x-axis.

Required volume = 2 jn (PM)? d(AM)

= for upper half of curve y
_ 2
=2 .[o mla - x)" dy [ varies from 0 to o - (2)

- ay® 2
o [ a2 T4
0 [a a2+y2} Y

2
[ From (1), x(a® + y?) = ay” so that x = Zay 2:|
a’+y

~  abdy

=2n | —S——=3
0 (y2 +a?)?

wheny=0,0=0 and
when y =, 0 = /2.

w2 %  asec? 0dO
g [ asect0do

0 a* sec* 0
/2 1 1
= 2na® J cos? 0do=2ma’ .~ . % =~ 1245
0 2 2 2
Note. From (2), we can also proceed as follows :
We have AM =y= alx
Ja—«x
1 1
a-—x. —-Jx . -1
2 2 -
d(AM) = dy = a. Jx Ja a dx
a-x
a? dx

- 2«/;.(a—x)3/2

From (2), the required volume
=2 Jn (PM)2 d(AM) = 27 Ja (@a—x)2%dy
0

a® dx

=9 '[a( )2
- 0 . .2x/;.(a—x)3/2

.2
— na? J‘a Ja—x d [Putx=as1n 0
0

.. dx =2a sin 0 cos 6 dO

X

Whenx=0,0=0, andwhenx:a,ezg}

n/2 \a cos? 0 .
=na2J ———= . 2a sin 0 cos 0 dO

0 asinZ 0

n/2 1
=2na3'[ cos? 0 dO = 2ma’ . .gzana.
0

DO | =

Puty=atan0 ..dy=a sec? 0 d0

of Solids of Revolution
M
IV NOTES
A(a, 0) ;
©
I
x
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Calculus—II

Example 2. A quadrant of a circle of radius a, revolves aboul its chord. Show

. . T 3
that the volume of the spindle generated is (10 - 3m)a”.
6 \/5 YA
Sol. Let the equation of the generating circle
NOTES be x? + y? = a? (D B(0, a)
If A and B be the extremities of the arc (in the \ PXx.¥)
positive quadrant), then the equation of line AB is M
0- >
y—0= _a(x—a) 0 A@ 0 X
or x+y—a=0.
If P(x, y) be any point on the arc AB. Draw PM L
on chord AB and join AP.
[(o 2
Then pM=Xty-ae_x-atya —x [From (1)]
) 2
x> +a?-2ax+a®-x2+2x-a)ya® - x?
and PM2 =
2
=(@-%) (a-4a®-x?)
Now AM? = AP? — PM?
=(x—a)?+y? x+y-a)’
2
= % [2(x — @) + 2y? — (x — a)? — y* — 2y(x — a)]
_1 2 4 02 _1 2
=3 [((x —a)* +y° - 2y(x —a)] = 5 x—a-y
1 1
AM= = -y -0 = = (r-a-a’ —x") [From (1)]
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1 x \/az—x2+x
dAM) = — |1+ dx = dx
(AM) ﬁ[ N/ag_xz} V2 Ja? -

Also for the arc AB, x varies from 0 to a.

Required volume = j n (PM)? d(AM)

2_ .2
a Ja©t —x° +x
:j nla—x)a-ya?—x?). ————dx
0 V2 \a? - x?
Put x = a sin 0, so that dx =a cos 6 d0,
and whenx=0,0=0, whenx =a,0=m/2
/2 acosO+asin®

= . a(l—sin0) . a(l —cos 0) . .acos 6 do
Jo ﬁ.acose

1'[a3 /2 ) .
= _«/5 -[0 (1 —sin B)(1 —cos 0) (sin 6 + cos 6) dO

T[a3

/2
:_-[0 (sin © + cos 0 — 2 sin 0 cos O — 1 + sin? 6 cos O + cos? O sin 0) dO

2



n/2
= [—cos6+sin6+cos26—6+%sin36—lcos36]
0

3
- (—0+ 1+0—£+1—OJ—(—1+0+1—0+0—1)
2 3 3

na (5 n) na®

= (10 - 3m).
eﬁ(o 3m)

VOLUME BETWEEN TWO SOLIDS

The volume of the solid generated by the revolution aboul the x-axis, of the area
bounded by the curves y = f(x), y = 0(x) and the ordinates x =a, x =b is

b
J n[(y of upper curve)? — (y of lower curve)?] dx.
a

Let AB be the curve y = f(x) and CD be the curve Y4
y = ¢(x) both between the ordinates MCA (x = a) and
NDB (x = b).
Volume of the solid generated by the
revolution about x-axis, of the shaded area ACDB.

=volume of the solid generated by revolving the area
AMNB about x-axis —volume of the solid generated by

revolution about x-axis, of the area CMND. 0

b b
= j [ f0)]? dx — j [o@)]? dx.

a a

Example 1. The figure bounded by a parabola and the tangents at the extremities
of its latus rectum revolves aboul the axis of the parabola. Find the volume of the solid
thus obtained.

Sol. Let the equation of the parabola be
y% = 4ax, and let LSL’ be its latus rectum and LT,
LT the tangents at L. and L.”. The equation of the
tangent at L. (a, 2a) i1s y.2a = 2a(x +t a) or y = x + a.

This meets x-axis in T(— a, 0). The curve and
the two tangents TL, TL’, are symmetrical about
X-axis.

Required volume of the solid formed by revolving the area TOL about the
axis of parabola (i.e., x-axis) = volume of the solid generated by revolving the area TSL
about x-axis —volume of the solid generated by the revolution about x-axis of the area
OLS.

= Ja ny? dx — Ja ny? dx
e 0
(for tangent) (for curve)

— Jaan(x + a)? dx — J: 7t . 4ax dx

x+a?] 21 _m 2
Zn[ 3 ]_a—Ztm[x]025(8(13—0)—2(171.(12:571(13‘
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Calculus-I1 Example 2. Show that if the area lying within the cardioid r = 2a(1 + cos 6) and
without the parabola r(1 +cos 6) = 2a, revolves about the initial line, the volume generated

s 18na’.
Sol. The equation of the cardioid is r=2a(l + cos 6) NE))
NOTES %
and the equation of the parabola is =17 cos0 (2

Both the curves are symmetrical about the
initial line.

The upper half of the shaded area revolves
about the initial line and it will generate the required
volume.

The two curves intersect where solving (1) and
(2). (Eliminating r) [i.e. Putting the value of r from (1)

in (2)]
2a
2a(1 + cos 0) = ——
( ) 1+cos©
or (1+cos0)?2=1 or 1+2cosO+cos20=1
or cos 02 +cos0)=0 .. cosO=0o0r—2
But cos 6 # -2, [* cos 6 can never be numerically > 1]

cos0=0or 6==xm/2
For the upper half, 6 varies from 0 to /2.
Required volume

/2
= Jn 2n [(r of outer curve)® — (r of inner curve)?] sin 6 dO

3
= _n [2a(1+ cos 0)]3 S sin 6 dO
3 1+cos6

-2

_ 16ma’ _(1—16)_1(1_1)
3 4 2 4
16ma® (15 3\ 16ma’® 27
= — | = 18 ma®.
3 3 8

/2
{ (1+ cos 9)4 (1+ cos 0) 72 T
0

4 8)

REVOLUTION ABOUT ANY AXIS

The surface area of the solid generated by the revolution about any axis CD of
the arc AB 1s

x=0D
j 21 (PM) . ds
=0C

where PM, AC, BD are perpendiculars from any point P, A and B of the arc AB on CD
and arc PA =s and O is any fixed point on the axis CD.

Take the fixed point O as origin, the axis of revolution OCD as the x-axis and
OY perpendicular to it as y-axis (Refer to figure of Art. 5,).
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Let the co-ordinates of P be (x, y) so the OM = x and MP = y. Volumes and Surfaces

of Solids of Revolution
Then the curved surface
x=0D x=0D
= J 2nyds = J 2n (PM) ds.
x=0C x=0C NOTES

Example 1. Find the area of the curved surface generated by the revolution of
the cyclotd x =a (0 +sin 0), y =a (1 — cos 0) aboutl its base.

Sol. The equations of the cycloid are x =a (0 + sin 0), y = a (1 — cos 0).
The cycloid is symmetrical about the y-axis.

For the arc OPA of the cycloid 6 varies Y4
from 0 to . The cycloid revolves about the base B c M A
BA, which is a line parallel to x-axis and at a
distance 2a from it. 2a V\
Now if P(x, y) be any point on the cycloid P(X, y)
and PM 1 AB (axis of revolution), then PM o )"(
=2a-—y.

Required surface
= 2 X surface generated by the arc OPA

T ds
=2 2n (PM) —
.[0 m (M) do a0

n 2 2
=4nL 2a — ) (ggJ+(g%)¢w

= Agn J‘n (2a —a+ acos 0) \/a2 (1+cos 0)? + a® sin® 0 dO
0

= An 2 Jm (1 + cos 0) 2 (1+cos6) dO
0

= 4n a? J‘n (2 cos? 0/2) (2 cos 0/2) do
0

/2
= 16w a? J‘n cos® t . 2 dt, where t = 0/2
0

64mna’

=32na2.2=
3 3

EXERCISE 8.3

1. (a) Show that the volume of the solid formed by the revolution of the cissoid y? (2a — x)
= x? about its asymptote is 2n%a?.

(b) Find the volume of the solid generated by the arc of the cissoid x = 2a sin? {,

;03
2a sin° t .
-zasn ¢ about its asymptote.
cos ¢

2. Find the volume of the solid of revolution obtained by rotating the area included between
the curves y2 = x° and x2 = y® about x-axis.

3. Find the area of the surface generated if an arch of the cycloid x = a (6 — sin ),
y =a(l — cos 0) revolves about the line y = 2a.
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Calculus—II Answers

1. (a) 2n%a® (b) 2n2a® 2. — 7. 3. — mad®.

NOTES

THEOREMS OF PAPPUS AND GULDIN

(@) If a closed plane curve revolves about an axis in its plane, which does not
intersect it, then the volume of the solid generated by the area enclosed by
the curve is equal to the product of the area enclosed by the curve and the
length of the path described by the centre of gravtiy of this area.

(1) If an arc of a plane curve revolves about an axis in its plane, which does not
intersect it, then the area of the curved surface generated by the arc is equal
to the product of the length of the arc and the length of the path described by
the centre of gravity of this arc.

Proof. (i) Let Abe the area of the closed curved
and 0, the angle through which it revolves

Take the axis of rotation as the x-axis and a
line perpendicular to it as y-axis. Consider an element
of area 8A at any pont P(x, y) which after the rotation
through an angle 6 radians takes the position P.

The length of the arc described by O is y6.
(I = r0) Hence the volume 8V of the solid generated
by the element = y6 . SA.

The volume generated by the whole area

=3y0 . 5A = 05ySA = 6 ydA

the integration being taken over the whole area.
If ¥ be the ordinate of the centre of gravity of the area, then

_ [ydA [yaA
C[da A
[ vdA = Ay
Substituting in (1), the volume generated by the whole area
=0. Ay = AGH0)

= area of the curve X length of path described by the C.G of the area

() Let s be the length of the arc of the curve and 8s, an element of the arc at any
point Q(x’, ) on the curve

Then the length of the arc described by Q in a rotation through an angle 0 is
y’0. Therefore, the area of the surface generated by the element ds in y'0.8s

Hence the surface area generated byt he whole perimeter

=3y'0.85 = 0 y'ds e
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If ¥ is the ordinate of the centre of gravity of the arc, then

y = W = [From Statics]

.[ yds = sy
Substituting in (2), the required surface area
= 0.5y =s(y0)

= the length of the arc X the length of the path described by the C.G. of the arc.
Note:

1. In (i) above, the axis of revolution should not intersect the curve, it may however, touch
it. In (i1) above, the revolving arc should not cross the axis of revolution. but it may be
terminated by it, or it may touch it.

2. If the curve revolves through four rt. Zs, 6 = 2n
Example 1. Find the volume and the surface of the anchorring formed by the
revolution of a circcle of raduis about a line in its place at a distane d from the centre,

(d > a)

Sol. Area of the circle = na?

Circumference of circle = 2na

The centre is at a distance d from the axis of
revolution

Length of the path described by C.G. = 2pd

(Here 6 = 2m)

Volume of the anchor-ring

= na? x 2nd = 2n%a*d

Surface area = 2na % 2nd = 4nad

Example 2. The coordinates of the vertices of a rectangular lamna ABCD are
A2 2), B(6, 2), C(6, 4) and D(2, 4). Using the theorem of Pappus, find the surface of the
solid obtained by revolving the rectangle about the line x = 9.

Sol. AB=4,BC=2

Perimeter of rectangle = 2(4 + 2) = 12

C.G. of lamina s G(4, 3) the mid point of
diagonals

Distance of G from y-axis =4
Distance of axis from y-axis =9
Distance of G from y-axis=9-4=5

Distance moved by G in one revolution

=5 x2n=10xn
Required surface of the solid = 12 x 10m = 1207

Example 3. A square of side a revolves about a line through a corner and
perpendicular to the diagonal through that corner. Find the volume and area of the
surface of the solid generated.

Sol. Area of square = a?
Perimeter of square = 4a
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Calculus-I1 Let G be the C.G. of the square. Then AM = GM = a/2

AG = distance of G from axis of revolution

_£+£:JE:1
NOTES ok et by

Distance moved by G in one revolution

2 x2n = \2an

NG

Required volume
a? x\2an = Jong?

Area of surface 4q x+/2an = 4/2ma?

2 2
x .
Example 4. The ellpse — + Z—2 = I revolves about a tangent at an end of (1) the
a

major axis (i) the minor axis. Show that the volumes generated are 2r°a?b and 2nab?
respectively.

Sol. Area of ellipse = ab

() Distance of G, the C.G. of ellipse (i.e., centre) from the tangent at an end of
the major axis = a. Distance moved by G in one revolution = 2na

Required volume = nab x 2na = 2nab

(1) Distance of G from the tangent at an end of the minor axis = b. Distance
moved by G in one revolution = 2nb

Required volume = nab x 2nb = 2nab?

Example 5. The loop of the curve x(x* + y?)
= a(x? +y?) revolves aboul the straight line y = 2a. Find
the volume of the solid generated.

Solution. The equatio of the curve can be written

as
yi(x + a) = x*(a — x)
. x%(a - x)
or YT a+x
The curve is symmetrical about the X-axis and cuts the X-axis at O(0, 0) and
A(a, 0)

Area of the loop = 2J.: ydx

2_[: x %dszJ': %dx

Put x = a sin 0, then dx = a cos 0 dO

whenx=0,0=0; whenx=aqa,0= —

N3
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Area of the loop = 2_[(;[/2 asinbla _g sin 6) a cos 0dO
a cos

2
= ZaZJ.n/2 (sin 6 — sin? 0) dB =2a?| 1 - T\ a_(4 -m)
0 4 2
The loop being symmeterical about the X-axis, the C.G. of the loop will be open
the X-axis and the distance of the C.G. from y = 2a (the axis of rotation) is 2a.
Distance moved by the C.G from y = 2a (the axis of rotation) is 2a
2

Required volume = %(4 -m)x4na = 2na’(4 —m)

Example 6. The loop of the curve 2ay? = x(x — a)? revolves about the line y = a.
Find the volume of the solid generated.

5 _ x(x —a)?

Sol. The equation of the curve is y 7
a

It is symmetrical about x-axis
It passes through the origin (0, 0)

The tangent at origin is x = 0

The loop is traced as x increases from 0 to a.

Area of loop = 2J.: ydx

a Jx(x —a) _ |2 39 1/2
:2.|.0 de— ;J.o (x*"* —ax™*)dx

_ \E[%xs/z _zaxm}“ ) ﬂzﬁ ) zazﬂa
albd 3 0 a 5 3 ,

2

15 15
Since the loop is symmetrical about X-axis, its C.G. lies X-axis and the distance
C.G. of loop from the axis revolution is a.

Length of the path traced out by C.G = 2na

@az X 2ma —8m3\/§
15 15
Example 7. A triangle is formed by the lines 3y = 4x, y = 0 and the perpendicular
on the first line from the point (5, 0). Calculate the volume obtained by revolving the
triangle about the y-axis.

(im magnitude)

Required volume =

Sol. The triangle is shown in the figure.
Equation of OB is 4 —-3y=0 ()]
Any line L toits 3x+4y+k=0
If it passes through A(5, 0)
k=-15
Equation of AB is
3x+4y—-15=0 ... (1)
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Calculus—II

NOTES

9 12
Solving (i) and (i7), the co-ordinates of B are (g,g)
Also co-ordinates of O are (0, 0)
9

12

Co-ordinates of G, the C.G. of AOAB are 0+5+ 5 0+0+ 5

3 b

(34
r.e., 15:5

Distance of G from the axis of revolution (i.e., Y-axis)
o
15

Distance moved by G in one revolution = 271 x% _68n

15 15
Area of AOAB = %(12) =6

68n 1367
i 1 =6x—=
Requried volume 15 5

Example 8. The length of an arch of the cycloid

x=a(® —sin 0), y=a(l — cos 0)

. . . . b64ma
1s 8a, and the area generated by revolving around the x-axis is

2
. Use Pappus

Theorem to find the area generated by revolving the arch about the tangent at the highest

point.

Sol. Length of arch OAB = 8a

Let the distance MG of the centroid G of the arch
OAB from x-axis = y

Distance moved by the C.G in one revolution
= 2my

Area of the surface generated by revolving
the arch about x-axis

= 8a x 2my =16amy

647na>

3

But it 1s given to be

64na’ _ 4da
or y=—

l6my = 3 3

Distance of G from the tangent at A (the highest point)

~MA_MG=2q-32_2a
3 3

Distance moved by G in one revolution about y = 2a is 21 x? =—

2a 4amn
3

Area of the surface generated by revolving the arch about the tangent at

2
A= 8qx2am. 32ma
3 3
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1.

10.

1.

EXERCISE 8.3

Examine the convergent of the improper integrals:

- o dx
() IO e* dx ) fo e

A+x
0 1 dx
@iv) J._m cosh x dx ) )., 1422
IZ dx 3 x-1 d
i) v 2y @iit) J2 [ o *
2 dx 1 dx
(x) J.l 2—x (i) .‘.0 xz -1
2 dx
i) Jo 5o _ 42

Express the following as Beta functions:
0 J'; x3(1 - %272 dx (i) J.oz x3(8 - x3) 3 gy

(iii) f; ™1 -2 dx

Prove that f: (@ —x)" 1 2"V dx =a™" 7 B(m,n)

1 ™t 1-x)"" . B(m,n)
Show that |, @ty = Ata)

Express the following integrals in terms of Gamma functions:

1
@) fo xP1 1 -x%)7"dx where p>0,g>0

(1) J.Z xP1 (@ -x)7 dx where p>0,g>0

12 . oo = ['m)T'(n)
Prove that (:: sin?" 9 cos™ ! 0d0O = Tmrm
Prove that
@) B, @ Blp +q, 7 =B(@+r, p)=B@, p), Br +p, 9
I'(p) T(q) T(r) [(s)

(i) B, ) B +a N Bo +a+r 9= "ro o

Evaluate J.o e 4 %32 dx

2 2

had X
@i | ™

2 dx
(D) .[1 \/E

e dx
(@) Jo x(log x)°
2a  dx
i by oo

The ellipse S yZ =1 is revolved about the line y = 2. Find the volume of the solid

36

generated.

[Hint. The line y = 2 is the tangent at the upper end of the mirror axis].
The loop of the curve 4y? = x(x — 2)? revolves about the line y = 2. Find the volume of the

solid generated.
Answers

(1) Divergent (i1) Divergent

3
(iir) Converges to &

3 (iv) Diverges to o
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Calculus—II

3n
(v) Converges to e (vi) Converges to 2
(vii) C ¢ (wiii) C . 8
vit) Convergen viit) Converges to -
NOTES 3
(ix) Converges to — By (x) Diverges to e
(x1) Divergest to — e (xit) Diverges to o
5 . 8,(4 2
2. B|4,— °B| =, 2
o 4.3 ] i 3535 ]
i) S22
3 \33
p
g Mo g, T(PT(Q)
5. () (i) a ﬁ
2I‘(£+qj pra
2
3vn
NG 2
8. 198 9. 48m
64+/2
10, 842,
15
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9. DOUBLE AND TRIPLE
INTEGRALS, CHANGE OF ORDER

STRUCTURE

Evaluation of a Double Integral

Change of Variables in a Double Integral
Triple Integrals

Change of Variables in a Triple Integral
Change the Order of Integration

EVALUATION OF A DOUBLE INTEGRAL

B[ b
The double Integral j U f(x,y) dy*) dx is obtained by integrating f(x, y)
o a

over [a, b] treating it as a function of y (regarding x as a constant) and then
integrating the resulting function of x over the interval [o, B].

Similarly, by integrating f(x, y) w.r.t. x first (treating y as constant) and y
later, we can define another repeated integral

Jj (J:f(x, y) dxj dy.

Note 1. If the limits of integration a, b ; o, B are constants, then the order of integration
is immaterial, provided the limits of integration are changed accordingly.

e, jﬁ jjf(x, ) dydx = jb jff(x, y) dx dy

Note 2. In the case of variable limits of integration, we integrate first w.r.t. the
variable having variable limits and then w.r.t. the variable with constant limits.

302
Example 1. Evaluate -[0 L xy(1+x+y)dydx.

3 2 2
Sol. J J xyl+x+y)dydx = ja(j (xy + x%y + xy?) dy )dx (By Art. 2. above)
o o\ J1

*dy dx indicates that we are to first integrate w.r.t. y and then w.r.t. x.

Double and Triple
Integrals, Change
of Order

NOTES

Self-Instructional Material
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NOTES

where
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Integrating partially w.r.t. y treating x as constant,

3[ p2 2 2
:j [xj ydy+xzj ydy+xj yzdy]dx
ol & 1 1
3 2)2 2)2 32
:J x[y—J +x2[y—J +x[y—] dx
0 2 1 2 1 3 1
3
:j [x(é—1)+x2(é—l)+x(§—lﬂdx
0 2 2 2 2 3 3
3
:j (3x+3x + x}dx
0\ 2 2 3

2 33
(23 32J 23 x* 3«
—j —Xx +—= dx =|=—="—+="—
o\ 6 2 6 2 23)

69 , 27 _69+54 _ 123

4 2 4 4
Example 2. Fvaluate the double integral

j;/2 j; fix, y) dy dx

X

1—x2y2 ‘

23
—5(9) (27)—

flx,y) =

dy dx =j1/2 Jq#dy dx

J Jf(xy)dydx J J‘OF . (1)2_ )

X

(We are first integrating w.r.t. y treating x as a constant)

1
1/2 1 1/2
=j j;dy dxzj [sin_li} dax
0 0 12 0 Vx 0
- _ 2
)
( J‘x/idy—mn 11]
1/2 1/2 1/2
=j (sin‘lx—sin‘lo)dxzjo sin! x dx =j0 sin™! x. 1dx

0
Applying product rule of integration,

» 12 v .
=|(sin"" x)x - .[o x dx
0

1-x2

1/2
:lsin_ll+l (1-x2)7V2 (- 2x) dx
2 2 2Jo



then

1 2)1/2 1/2 (f( ))n+1 Double and Triple
:_(_j = '[(f(x))nf( Ydx = ifn+-1. Integrals, Change
2\6) 2 1/2 0 n+1 of Order
i 3 NE)
SR LA LA L
12 \/: 12 2 NOTES
2
Example 3. Evaluate J J e’ dy dx.
0Jo
1 px2 1( pa? R 1
Sol. Y dy dx = YeEdylde = [ | € - ©_
o jojo e y dx joUo e yJ x jo(l/x i dx jox(e 1)dx
Integrating by parts,
1 o\l
X 1 1
—| x(e* - _ —e-1-e* -2 | =e-1-|e-=-1|==
{x(e x):| j (e*—x)dx =e [6 2 JO e (e 5 ) 5
Example 4. Evaluate jaj “ Ja? —x% —y? dx dy.
0Jdo
a pa?-y? a pfa?-y?
Sol. JaZ —x% —y? _ [(2_ .2y _.2
0 jojo a” —x“—y“ dxdy J‘oJ‘o (@®—y°)—x" dx dy
:J‘GJ‘ o JAZ-x2dxdy where A2=q?-y?
0Jo
9 a—y?
:ja E11A2—3(2+A—sin_1E dy
0|2 2 A 0
_ ) ) a2_y2
:ja £\/tztz—y2—3c2+a —) gin X dy
0|2 2 a? - y?
L 0
N 2 .2 2 _ .2
P [ e,
0 2 2 a?—y?
:Ja a2_y2 nl1|d J a’ —y d . sinE—l : sin_ll—E
0 2 V= Y ' 2 7 2
37¢ 3 3
T (%, o 2 T 2 y Y 3 a T 2a na3
= — — d = — _— = — —_— |, —
4J‘O(a y9)dy 4{a;v 3]0 4{a 3} 173 T
Note. 1. If f(x) is an even function of x i.e., f(— x) = f(x), then
_[a £(0) dx=z_[af<x) dx.
-a 0
2. If f(x) 1s an odd function of x i.e., f(-— x) = — f(x),
_[a F) dx =0.
-a
Example 5. Evaluate jjx2 yZ dx dy over the circle x>+ y* < 1.
Sol. x2+9y2<1
¥?<1 and y?<1-x?
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NOTES

and

or

r.e.,
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x? <12 and  yZ2<(1-x2)?
-1<x<1 and —Jl-xZ<y<y1-x2
x?<a? = -a<x<a)

(.
jszyz dx dy over the circle x? + y2< 1

1 J1-2?
_ 2.2
_'[_1( oty dy]dx
2
Ji-a? g i-®
Let us first evaluate J 2ny2 dy =x2/2_
—y1-x 3 e

e =§{(1—x2)3’2+(1—x2)3’2}

2
X 213/2 2 4 213/2
=—|2(1-x%)"" |==x"(1-x")
3 { } 3

(1)

2 2 2 24 230 41y 213/2
(1) becomes jjx Yy~ dxdy —j_l 3~ (1- x°)""dx —gjox 1-x*)""dx

[ flx) =221 - x93 is an even function of x and

J_a f(x)dx = 2'[: f(x)dx because f(x) is an even function of x|

Put x=sIn 0

dx
— =cos0 Ix = ,
20 or dx=-cos0do

When x=0, sin 6 = 0, r.e., 0=0
When x=1, sin 0 =1, r.e., 0=m/2

jszyzdx dy =§j:x2(1 —x2)¥2 dx

/2
= % jo sin?0 (1 -sin?0)*2 cos0 do

/2
:iJ‘n Sinzecos4ede :iﬂi:l
3J0 3642 2 24

Example 6. Find the area between the parabolas y® = 4ax and x° = 4ay.
Sol. The curves are y? = 4ax

x? = 4ay
Let us find points of intersection of (1) and (2),
2
From (2), y = x
4a
X4
Putting in (1), =4dax
164>
x*=64a’x or x(x®-64a® =0
Either x=0 or x*-64a°=01ie, x=0 or a°=64a>
x=0 and x=4a

(1)
(2



The two parabolas are x? = 4ay and y? = 4ax

2
.e., y=z— andy=2x/a«/;‘
a

If the region between the parabolas is denoted by D, then
2
D={(x,y):0£x£4a,j—£ys2\/5\/;}
a
Area = J‘l dx dy [By Note, Art. 1.]
D

da( p2vax x2=4ay
:Jo (J 1dy]dx

x%/4a

= J4a [y]wg\/; dx

0 x2/4a

:j:“{mf_ﬂdx A¥ X

3/2 3 T4 3

x x 4Va 32 64a

= 9./ _ - 4 _o%a
{ Y } g o

y2 = 4ax

12a 0 12a
_32 5 16a®>  16a*
3 3 3

Caution. On solving (1) and (2) for x, we have got x = 0 and x = 4a.
Putting these values in x, we could get y = 0 and y = 4a.

But we should not take the limits of integration as 0 <x <4a, 0 <y <4abecause
otherwise D ={(x, y) : 0 <x<4a, 0 <y <4a} would be a rectangle.

CHANGE OF VARIABLES IN A DOUBLE INTEGRAL

We have been evaluating ordinary complicated integrals by means of
substitutions i.e., by means of change of variable.

Exactly similarly, we can perform change of variables in double integrals.
If the variables x, y in a double integral JRJf(x,y) dx dy be changed to u, v by

means of the relations x = 0(u, v) ; y = y(u, v), then the double integral is transformed
to

[ [r1o@onw@ollT|dudy where

ox ox | and R’ is the region in u — v plane
ou ov | corresponding to the region R of x —y
dy 9y | plane. The determinant J is called
ou  ov | Jacobian of x, y w.r.t. u, v.

J:

Thus, the rule for change of variables in a double integral is: Replace x,
y by their values in terms of u, v ; the element of area dx dy by | J | du dv, and the
region of integration R by R’ (the corresponding region in the u, v plane).
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Calculus—II Remark. In problems where the region is % + y?< a? and preferably the integrand is a
function of (x% + y2) ; we use the transformations x =r cos 0, y = r sin 0.

Example 7. Evaluate ij2y2 dx dy over the circle x> + y?< 1.

NOTES Sol. Let us use the transformations
x=rcos6,y=rsmnbo
G.e., x2+y2=r?) (See Remark Art. 3)
The region {(x, y) : x*+ y?< 1} is mapped into the region
{@,0):0<r<1,0<0<2n}

@?+y?<1 de, r*<1.Butr=0 .. 0<r<l

Jacobian J=|9r 90 |_ C?SG —rsmf)_ rcos?0+rsin?0=r
a_y ﬂ sinf rcos0
or d0

|l =1lrl=r;dedy=1dJ 1| drdo=rdrdd

2n 1
” ny2 dx dy = o.[ 0r2 cos?0.r2sin?0.rdrdo
0=0Jr=

22 +y2<1
m 9 15 2, o, S !
:J cos” 0sin eJ'r drdez'[ cos“0sin“ 0| —| db
0 0 0 6 0
2
:lJ‘ ncosz 0 sin? Gdezzjn cos? 0 sin? 0 dO
6 Jo 6 Jo
2a a
Here f(0) = cos? 0 sin2 0 and f(2n — 0) =f(0) .. jo f(e)d9=2j0 f(e)de]
42, _2 11n_=m
_E-[o cos“0sin“0do 3-—4.22 on

/2
[ Jo sin? 0 cos?0d0 (p>1,q>1and p, q are integers)
= [(» — 1) x go on decreasing by 2][(q — 1) X go on decreasing by 2

( X g if p,q are both evenﬂ

(p +q) X go on decreasing by 2
2 2
Note. jo cos"0dO or J sin” 6 dO (s a positive integer > 1)
0

_ (n —1) x go on dereasing by 2
n X go on decreasing by 2

., .
(x 3 if n is even)

Example 8. Fvaluate 'U sinm(x? +y?)dx dy.
22 +y? <1
Sol. Let us use the transformations x =r cos 0, y = rsin 0 (l.e., x*+ y?=r?)
(see Remark Art. 3).
The region {(x, y) : x* + y? < 1)} is mapped into the region {(r,0) : 0 <r<1,
0<6<2m}.
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@?+y?<1 de, r*’<1. Butr=0 .. 0<r<1l
ox Ox
o 0 —rsin®
Jacobian J=| 9r 90 |_ c?s TRIRE L cos2 0+ rsin?0=r
dy dy sin® rcos6
or do
ldl=Ilrl=r

sin 7 (x? + y%) dx dy

x2+y2£1

2n 1 . 27 1 i
:J‘e J'=0 (sin %) |J |dr dO :jo (jorsln(nrz)dr)de o

=0

Let us first evaluate Jl rsin (mr2)* dr
0

Put r’=1
Differentiating 2r = ﬂ . rdr= ﬂ
dr 2
when r=0, t=0
when r=1, t=1
1 1 1
J r sin nr? drzj sin ntﬂzl[— cosnt]
0 0 2 2 T o
1 1 1
=——|[cosm—cos0]=——(-2)=—
2n 2n T

Putting this value in (1),

2n 2n
H sinn(x2+y2)dxdy='[ ldezl(eJ :Z—R:Z‘
0 T i

2+ y2 <1 T 0
71— x2/a? — v2 /b2
Example 9. FEvaluate jj x2/a2 y2/b2 dx dy
I1+x%/a” +y“/b
over the positive quadrant of the ellipse
2 2
x—2 + y— = 1 .
a b
X2 2
Sol. The region is =+ y_2 <1,x>0,y>0 (In First Quadrant)
a b
Put Zou and L=y
a b
xX=au and y=bv
dx=adu and dy =b dv

2
. X .
The region 5+ y_z <1 becomes circle u? + v

*To evaluate any integral of the type Jx f(xz) dx ;put a2 =1t.
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dx dy = H

fl u? ab du dv ..(D
1+u? +0?

J’ 1-x%/a? - y2/b?
, 9 V1+x%a? + y2

2y u?+v2<1
a® b uz20,v=>0
NOTES x20,y20 ’
Nowput w=rcos6,v=rsin0

New Limits are 0<r<1,0<6<

| J | =randdudv=1dJ | drdd =rdrdo.

(-+ of positive quadrant)

V!

The given integral becomes

=a jmzj E+r rdrd6
r

Put ri=t 2r dr = dt or rdr— 2
when r=0, t=0
r=1, t=1

Given Integral
SN )
/2
N R [ )

_ab Zl 1 _2\-12,
=2 in” t} +§j0(1 2" V2(_2¢) dt | do

/2
J 1-¢ ualzt‘ale (Rationalise)
1+t 1-t

t dt] do

Ji-2

2| 1/2
:a_b § sin"11- s1n_10+— —(1 t) do
2 Jo 2 1/2 0

1

/2
ST o la-2)v2| |qe
2 Jo 2
0
n/2

/2
_ab (Lo_l)de:%(i_l) 0
2 Jo |2 2\ 2 o

2
:a_b(i_lJEZ“_b(“__EJ:ab
2\ 2 2 2| 4 2

TRIPLE INTEGRALS
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The triple integral is defined in a manner entirely similar to the definition of

double integral.

Like the double integral the triple integral is evaluated by reducing it to a

repeated integral in which three successive integrations are performed.



We further explain it below :
For example in the following integral

Zy=b yo =0y (2) X9 = fo (¥, 2)
jz jz ’ jz ’ fx,y,2)dx | dy | dz

z1=a y1=01 (2) x=11(,2)

)

we shall first integrate f(x, y, z2) w.r.t. x (treating y and z as constant) between the
limits x; and x,. The resulting expression (i.e., the value of the above integral which is
a function of y and z) is then integrated w.r.t. y treating z as constant between the
limits y, and y,. The resulting expression which is a function of z only is then integrated
w.r.t. z within the limits z, and z,. Hence the order of integration is from the innermost
rectangle to the outermost rectangle.

The reader can easily observe from the above explanation that :

We first integrate w.r.t. the variable whose limits involve two variables,
then w.r.t. the variable whose limits involve one variable and finally w.r.t.
the variable whose limits are constants.

But if the limits of integration x,, x, ; y;, ¥, and z,, 2z, are all constants, then the
order of integration is immaterial, provided limits are changed accordingly.

Thus, sz 52 Jzczf(x, y,z)de dy dz
1°Y1 %1
X z 'y X Z
=" 2'[ © fx,y,2)dy dz dx =I 2jy2 * flx, y,2) dz dy dx.
X1 Y21 YN x1 dy Iz

Note. Volume = JJJ 1dx dy dz.

e plogy pe*
Example 10. Evaluate j j j logzdzdxdy*.
1d Ui

Sol. Jle Jology Jlexlogz dzdxdy = J'E(J‘;og y(jfxlogz dz J dxj dy ..(D

J‘lex logzdz= J‘lexlogz .1dz

x
& x

e 1
Integrating by parts = [log z. z] - j —.zdz
1z
1

‘ jl.l[dle.jll—j(j—xljﬂ)dx

e

=e*log e” —logl—(zJ =xe’ —(" -1 =(@x-1) e+ 1.
1

From (1), Le jolog yJ‘lexlog zdz dx dy

_ '[e '[l"gy [(x -1 e* +1]dx dy o)
1J0

*dz dx dy indicates that we are to integrate firstly w.r.t. z ; then w.r.t. x and finally
w.r.t. y.
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Calculus—I1 log y logy logy
Now J [(3c—1)e’“+1]dx='|‘0 (x—l)e’“dx+'|‘0 1ldx
0

log y

logy
logy
= {(x -1 ex:| - jo l.e" dx+ [x] (Integrating by parts)
0

NOTES 0

logy
=(logy—1)el°8y+1—{ex:| +logy

0
=(ogy-1y+1-(e8¥-1)+1logy
=ylogy-y+1-y+1l+logy=(@+1logy—-2y+2

From (2), Le j()logy J.lexlogz dz dx dy

=L [(y+Dlogy -2y +2]dy
- L (logy) (y + 1) dy + L 2-2y) dy
Integrating the first integral by parts,

2 e 1( 42 ¢
= logy[y?-i-y] —j —(y—+y]dy+ 2y—y2
vy 2 1

e ¢y 2
=—+e— Z+1|dy+2e-e“—-(2-1
2 ¢ -[1(2 ) Y +2e—e” )

o2 y2 ¢
=—+e-— T+y +2 —e? -1

2
1
2 2
=-% 43e-1-|% te- 1+1
2 4 4
2 2
—_C 8e-1-% e 2L g 5%
4 4

dx dy dz

ﬁ over the tetrahedron bounded by
X+y+z+

Example 11. Fvaluate jjj
the co-ordinate planes and the planex +y + z= 1.
OR

I1pl-x pl-x-y 3
Evaluate JJ J (x+y+z+ID)"°dzdydx.
odo Jo

Sol. Let the given region be R.
The region R is bounded by the co-ordinate planes (x=0,y =0, z=0) and
the plane x+y +z=1.
re., theregionRis{(x,y,2):x>0,y>0,220,x+y+2z<1}
xty+z<1l = x<1l,x+y<1 and x+y+z<1[-+ x20,y20,z20]
Now x+y<1 = y<l-x
and x+y+z<1 = z<1-x-y
Region R is {(x,y,2):0<x<1,0<y<1-x,0<z<1-x-y}
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dxdyd
S| Frverrry

:joj: xj: o ymdzdydx

Double and Triple
Integrals, Change

:Jl'[l'x'[l_x_y(x+y+z+ D 3dz dy dx

1- 2 1-x-y
J‘J‘ x{(x+y+z+1) ] dydx
0

n+1

| Jx”dxzx (nx-1) Y
n+1

1pel-x
B [ R | P
0Jo 20x+y+1) 8

1-x
:Jl_—l_l dx
0| 2Ax+y+1) 8 0

J‘;dyzj(x +y+1)" 2 dy :(x+y+1)_1 =

(x+y+1)2 -1

1
_fztiilex, 1 | jlx_ (- 1
_j0[4 8 +2(x+1)}dx _{ 4 2><8(—1)+210g(x+1)0

:—l+llog2—i lo 2—i
4 2 16 16

of Order
NOTES
A(1, 0, 0)
X
-1
x+y+1

CHANGE OF VARIABLES IN A TRIPLE INTEGRAL

(a) Change to cylindrical polar co-ordinates

The relations between the cartesian and cylindrical polar co-ordinates of a point

are given by the equations

x=rcosb,y=rsin0,z=z
ox oJx OJx
o 90 oz cos® —-rsin® 0
_0x,y,2) _|dy dy dy

Ar,0,2) |or 00 0z
Jz 0z o0z 0 0 1

ar 0 oz z4

=|sin® rcos®6 O

. . P(x,y, 2)
Expanding by third column
cos® —rsin6
=] . =rcos?0+rsin?0=r z
sin® rcos6
ldJ | =r o « N
s, dx dy dz is to be replaced by | J | dr [} 00° X
do dz =r dr d6 dz. v
r
Note. Cylindrical polar co-ordinates are useful when
the region of integration is a right circular cylinder. M
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Example 12. Fvaluate j” z2(x® +y?)dxdydz .

22 +y? <1
2<z<3

NOTES Sol. Let V={(x,y,2):2<2z<3,x*+y2<1}
Let us use the transformations,
X =r cos 0, y =r sin 6, z = z (cylindrical polar co-ordinates)
The region of integration V’ (in terms of r, 0, z) is given by
V={r0,2:0<r<1,0<0<2m, 2<2z<3}

lJI=r (see Art. 5 (a))
j” 2(x® +y?)dx dy dz =E(Ijn("j z.r? .rdz)d@)dr
x2+y2<1
2<z<3

[Replacing dx dy dzby | J | dr d6 dz=r dr d6 dz]|

1020 27 on ;3 15,3 2m
=[] 2| doar =[] [T sdo |ar=] T (e} dr
0J0o 2 ) oldJo 2 0o 2 0

1
1 4

=J 5rrd dr=5m| - :511(1_0):5_”‘
0 4 o 4 4

(b) Change to Spherical Polar Co-ordinates

The relations between the cartesian and spherical polar co-ordinates of a point
are given by equations

X =rsin 0 cos 0,

y=rsin0sin¢$, z=rcos?0.

ox O0x Ox
or 00 00
g=9w,y,2) |y 9 Oy
o(r,0,0) or 090 9o
0z 0z o0z
ar 90 00
sinBcos® rcosOcosd —rsinOsing
=|sinBOsind rcosBsind rsinbcosd

cos6 —rsin® 0

Take r common from C, and r sin 6 from C,

sinBcos¢ cosOcosd —sing
=r.rsin0|sinfsing cosOsind cosd
cos6 —sin0 0
Expanding by third row

cosOcos¢ —sind sinBcos¢ —sind

=r?sin@ [cos&)

cosOsing cosd sinfsind coso®

|

= r? sin O (after simplification)
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dx dy dz is to be replaced by
| J | dr d6 d¢ =2 sin 6 dr d6 do.

ZA
P(x,y, z)
r

9 z
o] LS N
¢ 90° X

90° y
Y M

Note. Spherical polar co-ordinates are useful when the region of integration is a sphere
or a part of it.

Example 13. Show that for m > 0,

J.J‘J‘ (x2 +y2 +22)" dxdydz = 4n
, Y 2m +3 .
x% +y  +27°<1
Sol. Let V={(x,y,2)  :x2+y2+22<1}.
Let us use the transformations,
x=rsin0Ocosd,y=rsin0sin ¢, z=rcos 0
(Spherical polar co-ordinates)
K24 24 g2 = g2
and | J | =r?sin O [see Art. 5 (b)]
The region of intersection V’ (in terms of r, 0, ¢) is given by
V' ={r0,0}:0<r<1,0<0<m 0<¢<2m}.
” 2 +y2+2H™ dxdy dz
2+ y2 +22<1
2m 201 Lo
J JJ (r*)"r*sin0 dr do d¢ (- x2+y2+z2=r2)
o JoJo
[Replacing dx dy dz by | J | dr d6 do = r? sin 0 dr d6 d¢]

= Jjn J‘On ,[01 r?™*2 5in6 dr do do
= j;nj: sin@ Jd r2m*2 dr de do
J-Zn J-n { 2m+33:| d6do - J- J‘ 251n+93 do

2m cos 0 -1 2
_jo [_2m+3} do= o om [cosn—cosO]d¢ 0 2m+3d¢

27
2m +3Jo 2m+3| | 2m+3

Double and Triple
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Example 14. Fvaluate J j j x? dx dy dz.
2y +?<a
Sol. Let V={(x, y,2) : x2 +y2 + 22 < 1}.
Let us use the transformations
x=rsinBcosd, y=rsin0Osino, z=rcos 0
(Spherical Polar Co-ordinates)
2+y2+22=7r? and |J | =r%2sin0O (See Art. 5 (b))
The region of integration V' in terms of r, 6 and ¢ is given by
V' ={r0,0:0<r<1,0<0<m 0<¢<2n}.

m x2 dx dy dz

2 2S1

X +y2+z

= J:U r? sin? 0 cos? ¢ 72 sin 6 dr dO do
[Replacing dx dy dzby | J | dr do do =r? sin 0 dr do d¢]

= jjnj:j:r4 sin® 0 cos? ¢ dr do do

= j;nj: sin® 0 cos? ¢ j()l r*drdodo

1
B 21 om . 3 9 i
_jo jo sin® 0 cos” ¢ 5 0d6d(|)
B 2npm 3 9 1 _l 2n 9 T
_.[o .[o sin® 6 cos Q).gdﬁdq) _5J0 cos (])JO sin® 0 d6 d¢
B 1 2n 9 n/2 3
_g-l‘o cos (]).2J0 sin® 0 dO6 d¢
a al2
[ If £(x) = f(a - x), then jo f(x)dx =2 jo £(x) dx}

2 (2n 9 2
_ 2 24
5.[0 cos” ¢ gy o

[ J‘ /2 sin” 6 d6 = (n — 1) x go on decreasing by 2
0

- X I if nis even
n x go on decreasing by 2 2

4 (2n 4 (27 (1+cos?2
:1—5'[0 cos2¢d¢=1—5 (—cos q)qu)

0 2
2 (2r 2 sin 20"
= — 1+ 20)do = —| o+
15.[0( cos 2¢) do 15[4) 2 ]o
4
=%[2n+%sin4n—0}=l—g [+ sin 4 = 0]



10.

EXERCISE 9.1
If Ais the rectangle 0 <x<1,0<y<3, find

2,3
JA‘J‘x y° dy dx.

1p1 3 el
(a) Prove that j j (a? + yz) dx dy =§ (b) Evaluate j j (x2 + 3y2)dy dx
0J0 0J0
dy dx
xy

a b
(c) Evaluate J. J.
141
) 2 o4 4 02
Verify that j j (xy + €¥) dy dx = j j (xy + €”) dx dy.
1J3 3 V1

101 a pb
Evaluate (a) j j dx dy ) J:) J:) (x? + %) dy dx.
0Jo

Ja-x31-y?)

Evaluate the following :

o [ w o JL R

1+x2+y2
1 px 9 /2 p4sin O
(c)” (x% + 3y + 2) dy dx (d)j j r dr do
0Jx2 o Jo
1ey2 +1 n pa (1+ cos6)
(e) J‘J‘ x2 ydx dy (/)jj rdrdo.
0Jy 0 Jo

Evaluate the following double integrals :

(@) _dexdy where A={(x,y) :0<x<a, 0<y<ua}
A

[Hint. Here limits of y are variable. So we have to integrate first w.r.t. y and then
w.r.t. x|

) dedy where A = {(x,y) : 0<x<1,0<y<2Jx}
A

1p01
(a) Evaluate the double integral '[ '[ dx dy and sketch the region of integration.
04y

V2 py4-2y2
(b) Evaluate the double integral j j
0 J-\4-2y?

ydx dy and sketch the region of
integration.

Evaluate JJny dx dy over the circle x% + y> < 1.
Evaluate JJnyQ dx dy over {(x,y) :x>0,y>0;x>+y>*<1}L

[Hint. Region of Integration is {(x,y) : 0<x <1, 0<y <41-x2}]

(a) Evaluatejjez’” 3% dx dy over the triangle bounded by x=0,y =0 and x+y=1.

(b) Evaluate chos (x +y)dx dy over the region bounded by x=0,y=0,x+y=1.
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12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

Evaluate j J‘\sz - yzdx dy where D is the triangle bounded by the lines y =0, y = «,
D

x=1.
[Hint. Region of Integration is { (x,y) : 0<x<1,0<y <} ]

(a) Evaluate ijy (x +y)dx dy over the area between y = x% and y = x.

[Hint. y = x% and y = x intersect at (0, 0) and (1, 1).
The regionis 0 <x<1, x> <y<x]

(b) Find the area bounded by the parabola y? = x and the line y = x.
Compute the value of j jy dx dy , where Bis the region in the first quadrant bounded
B

2 2

. x° y
by the ellipse — +===1.
a? b2
Hint Reg‘ionBisx>Oy>O'x2+y2<1 0<x<a,0< <Z’,/2 2 ORDob
. 20,y20;—5+-5=<1 = 0<x<q,0<y<—ya“ -«
2 B2 Y o 0 Dy

the method explained in Example 9.]

Evaluate J Jy dx dy, where Bis the region bounded by the parabolas y*=4x and x? = 4y.
Let A= {(x,By) cxZ 4 y2< 1k

Evaluate jAj(xz +yH) "2 dx dy

Evaluate j je_(xz +9%) dy dx where D is the region bounded by x? + y? = a?.
D

(a) Evaluate ijy (x2 + 3/2)3/2 dx dy over the positive quadrant of the circle x2 + y2=1.

(b) Evaluate ijy dx dy over the positive quadrant of the circle x2 + y2 = a2.

(a) Evaluate J‘J‘WIQ —x2 —y2 dx dy over the semi-circle x? + y? = ax in the positive

quadrant.
[Hint. Changing to polar co-ordinates the circle x% + y? = ax transforms into

r2=ar cos O i.e., r=acos 0.

Region of Integration is {(r,0) : 0<r<acos 06,0<0< g}]

(b) Evaluate JJ(aQ —x2- y2) dx dy over the circle x% + y2 = ay in the positive quadrant.

(@) Find the area of the region bounded by the circle x* + y* = a2.

(b) Find the area of the region bounded by x =0, y =0 and x> + y> = 1.

Find the area of the region bounded by y? = 25x and x2 = 16y using double integral.

2 2
Find the area of the ellipse x_z +2 =1,

b2

a
1- xz a2
Evaluate jj z—yz dx dy over the positive quadrant of the circle % + y* = 1.
1+x“+y



23.

24.

25.

26.

217.

28.

29.

30.

31.

1p1p1
() Evaluate j jj etV dx dy dz.
0J0YJ0

a ra ra 3 5
(b) Show that -[0 -[0 -[0 (yz + zx + xy)dx dy dz =Za

Evaluate the following :

(@) J:sz J:_xx dz dx dy ®) J‘:J‘WJ‘ oty xyz dz dy dx .

0 0
Evaluate the following :

1 pzpx+z 3 rl \/E
(a)j jj (x+y+2z)dydxdz (b)J.J. J. xyz dz dy dx
-1J0Jdx -2z 1J1/xJ0
lel-x pl-x-y
(c) JJ J xyz dz dy dx .
0J0 0

Show that the following integrals vanish :

(@) JJJ (2° +2)dx dy dz
x24y?+22 <1
2 2

2
b) Jjjxydedy dz over the ellipsoid x_+y_+Z—S1‘
a2 b2 2

(c) Jjj (ax + by + cz) dx dy dz.

22 +y?ezi<1
Evaluate Jjjxyz dx dy dz over the tetrahedron bounded by the co-ordinate planes and

the plane x+y+2z=1
[Hint. Same as Q. 25 (¢).]

Evaluate Jjj(x +y +2z)dx dy dz over the tetrahedron bounded by the planes x = 0,

y=0,z=0andx+y+z=1.

(1) Find the volume of the tetrahedron bounded by the planes x =0, y =0, z=0,

x z .
—+l+—=1;a,b,c are positive.

a b ¢

(i1) Find the volume of the tetrahedron bounded by the co-ordinate planes and the plane
x+y+z=1.
(i1) Find the volume of the tetrahedron bounded by the co-ordinate planes and the plane

XY L2
1 2 3
Find the volume of the sphere 1% + y? + 22 < o where a > 0.

OR
Find the volume of the sphere of radius a.

(@) Evaluate ,[,[,[22 dx dy dz over the sphere x2 +y2 +22=1.

(b) Show that J‘J‘J‘x2 dx dy dz = ‘;—2 where Vis the interior of the sphere 2%+ y2 + 22 =1.
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32. Evaluate ”‘J. (x?2+y?+2%)dxdy dz .

x2+y?+22<1

NOTES 33. Evaluate Jjj(lx +my +n2)?dxdydz over {(x,y, 2) : &2+ y? + 22< 1}

34. Evaluate Jjjz (x? +y2 + 2%)dx dy dz through the volume of the cylinder &2 + y2 = a2

intercepted by the planes z=0 and z= h.

dx dyd
35. Kvaluate JJJ\/ xz Y 22 = the integral being extended to the positive octant of
1-x" -y -2

the sphere x? + y? + 22 = 1.

[Hint. Change to spherical polar co-ordinates.
Region of Integration is
{(r,0,0):0<r<1,0<0<7/2,0< ¢ <n/2)}.]

36. Evaluate j j j (x2 +22) dx dy dz
D

x2+
a? b

2 2
where D= y—2+ <1

<'a|N
[\

37. Evaluate Jjj(ax +by +cz)dx dy dz over the ellipsoid

2 2 2
X LY LZ <.
a2 b2 A2
Answers
27
1. e 2. (b) 12 (c) log alog b
2
n ab , 2 ;2
-2 — +b
4 @ ® 3 (a )
9 b 7
= = log (1++/2 -
5. (@) (b) 7 log( +4/2) © 13
. 67 EI
3 4 1 8
a —_ — i
6. (o o5 (b) 5 7. (@) 3 (b) 3
8. 0 9. —
" 96
10. (a)1(2e3—3e2+1) (b)ysin1+cos1—-1 1. L £+£
6 312 3
12. (@) 3 ) 1 13 ab? 14. 28
) 56 6 "3 "5
15, 2m 16. n(1-e %) 17. (@)= b) a*
. - . - . Qa)— —_—
9 14 8
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3 4
2 5ma L
18. (@ 2 |Z_2 b 19. (@) na? b —
@ 3 (2 3) ® 16 4
2
g0, 200 21. mab 22. & _ T
3 8 4
4 1
23. —1)3 24. (a) — by —
(@) (e—-1) (@) 35 ®) 18
13 1 1 1
) b) — —=1log 3 — 27, —
25. @0 0 g -glhe © 720 720
28. % 29. (i) “%c (ii)% (i) 1
30. 23 31. () 27 32, 47
3 15 5
2
33. AT 22402 34. Za2n? (a2 +h2) 35.
15 4 8
4n 2, 2
36. —abc(c” +a”) 37.0
15

CHANGE THE ORDER OF INTEGRATION

We know by Note 1, Art. 2 that if the limits of integration are constant, then the
order of integration is immaterial, provided the limits of integration are changed
accordingly.

Thus, jd jjf(x, y)dx dy = jb j ", y) dy dx

But if the limits of y are functions of x, we have to find the new limits of x as
functions of ¥y while changing the order of integration.

For finding the new limits of integration to change the order of integration, a
rough sketch of the region of integration is helpful.

Example 1. Change the order of integration in  ya
the integral y =X

[[ reydyds. B

Sol. Here, we are to integrate first w.r.t.y
and then w.r.t. x.

The given limits show that the region of W
integration is bounded by the curves y=0,y=x,x=0
and x = a. A R
Let us draw a rough sketch of this region of 0O y=0 x=0 X
integration.

Now y = 0 represents x axis and y = x represents a st. line through the origin.

Also x = 0 represents y-axis and x = a represents a st. line parallel to y-axis.
Therefore, the region of integration is the triangle OAB in the adjoining figure and B
is (a, a) [obtained by solving y =x and x = a.
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Calculus-I1 For the given order®, the region of integration is divided into vertical strips. To
change the order of integration, we will first integrate w.r.t. x and then w.r.t. y.

For changing the order of integration, we divide the region into horizontal
strips.

NOTES The new limits of integration become :

The horizontal strips start from the line x=y [from y=x, we have x =y] and
end on the line x = a. [See the figure].

Also for this region, these strips start from y = 0 and end on y = a.
Hence on changing the order of integration, given double integral becomes

_[Oa ij (x, y) dx dy .

Example 2. Change the order of integration in

o poo L, Y
J J e—dy dx and hence find its value.
0 Jx y

o poo L, T Y
Sol. -[0 J e—dy dx = we are to integrate first w.r.t. y and then w.r.t. x.
= Y

The given limits show that the region of integration is bounded by the lines
y=xand x=0.

Let us draw a rough sketch of this region of integration.

Now y = x represents a st. line passing through the origin and x = 0 represents
y-axis.

For the given order, the region of integration Y4
is divided into vertical strips. y=X

To change the order of integration, we will first
integrate w.r.t. x and then w.r.t. y.

For changing the order of integration, we
divide the region into horizontal strips. (See footnote

given below) x=0

The new limits of integration become :

The horizontal strips start from the line x =0 >
and end on the line x = y. (See Figure) O y=0 X

(From y = x, we have x =)
Also for this region, these strips start from y = 0 and extend to y = .
Hence on changing the order of integration, the given double integral becomes

= J:{%x]y dx = J:[%y - 0] dy

=0
< e_ym o

*When the limits of y are variable, then given region is divided into Vertical strips and to
change the order of integration, we divide the given region into Horizontal strips. But if the
limits of x are variable, the given region is divided into Horizontal strips and to change the
order of integration, we divide the given region into vertiecal strips.
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V2ay — 2
j v f(x,y)dxdy and

Example 3. Change the order of integration of j ¢
0 Jo

verify the result by taking f(x, y) = 2x.
a \/Zay—yz
Sol. j j f(x,y)dxdy = we are to integrate first w.r.t. x and then
0 Jo
w.r.t. y.

The given limits show that the region of integration is bounded by the

curves x =0, x = /20y —y2 ;y=0and y =a.

Let us draw a rough sketch of the region of integration.
x = 0 represents y-axis.

The equation x= ,/2ay —y?

or squaring,  x? = 2ay — y? (D
or 22+ 92— 2ay=0
or X2+ y? — 2ay + a? = a?
i.e., x2+ (y — a)? = a® which represents a circle whose centre is (0, a) and

radius a. (This circle passes through origin). y = 0 represents x-axis and y = a represents
a line || to x-axis at a distance a from it.

Therefore, the region of integration is the area

OABC. " |
For the given order the region of integration is i
divided into horizontal strips. (See footnote page 352) a i
To change the order of integration we will first : B
integrate w.r.t. y and then w.r.t. x. (o, g)
For changing the order of integration, we divide a ||A)
the region OABC into vertical strips. i
To find new limits of integration : o ! ;
From (1), y?-2ay+x*=0 x=a
[1.2 2
y:2ai 4; —4x —atJa? 22

But for the region OABC, y < a
y=a-4a° —x

The vertical strips start (See Figure) from the circle y =a — ya? —x2 and end

on the line y = a.
Also for this region these strips start from x = 0 and end on x = a.
Hence on changing the order of integration, the given double integral becomes

J:ja_mf(xay)dydx‘

Double and Triple
Integrals, Change
of Order

NOTES
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Verification f(x, y) = 2x

jy oj_ f(x y)dx dy = B 0(jx2ay_y22xdx]dy

=0
[T
_[ Q2ay -y )dy—[ay —y;l) :as_a_;:% (2
Again,
J:J:_mf(x’y)dydx:J:Jya:a—m 2y
:j:[znya dx:j:Zx la — (@ —+a? - x%)] dx
y=a-a%-x?

= J:Zx w/az —x? dx

_ J‘“(az — )2 2%) dx = - M '
0 3/2 0

(fey

n+1

| j(f(x))"f( )dx = ifn#-1

2

2 213/2 3,_2 3
—— _— = —_- -\ — = — ;;;3
3[0 (a®)”*] 3( a’) 3a 6]

From (2) and (3), we can say that

J J f(x y)dx dy = J J mf(x,y)dydx where f(x, y) = 2.

EXERCISE 9.2

@ x dx dy
2

a
Change the order of integration in j j
y xZ+y

and hence evaluate the same.

4
Change the order of integration and evaluate -[0 L e” dxdy.

4a p2vax
Change the order of integration of the integral j j , dy dx and hence evaluate it.
/4a

a @ y?

Change the order of integration in the integral '[ '[0 f(x,y)dx dy.
-a

Change the order of integration in

1p2-x
I= J J , Yydydx and hence evaluate the same.
0vx



Answers Double and Triple
Integrals, Change

a px
J‘ J‘ xdydx dx o 9. 1(616 1 of Order
0 x2 +y 8

NOTES

ra ,[ 9 16a . JOJ\/\/:f(x ¥)dy dx

1oy 2 02—y
jj xydxdy+jj ocydocdy;§
0J0 1Jo 8
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NOTES

10. DIRICHLET’S INTEGRALS

Liouville’s Extension Of Dirichlet’s Theorem

In this chapter we are going to discuss Dirichlet’s integrals and their applications
in evaluating double and triple integrals, and volumes of some solids.

r'dI'm)

——— — " a"m where D isthe domain x >0,
I'd+m+1)

Prove: H x"lym1ldx dy =
D

y >0 and x + y < a. Hence, establish Dirichlet’s integral* :

' I'm)I(n)
I'l+m+n+1)

'['U xk-1 ym-1 zn-1 dx dy dz =
\

where Vis the region: x>0,y>0,z>0and x+y+z<1.
Sol. Putting x = aX and y = aY, then given integral becomes

I= _” @X)H @)™ ! a? dX dY
o

where D" is the domian X >0, Y>0and X+Y <1

1 p1-X
— al+m J‘O J‘O lel ymfl dY dX

1-X
1 ym l+m 1
= ghm ,[0 Xi-1 |: } dX = a JO XEL (1 = X)m dX

m m
l+m l+m
-9 Bd, m+1)= a r)rm+1
m rd+m+1
') T(m)
— ylm 7 . .
Tl+m+1) (- T+ 1) =mI(m)

To establish Dirichlet’s integral.

*Named after a German Mathematician P.G.L. Dirichlet (1805 — 1859) and is known for his
contribution in Fourier series and number theory.
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Taking y + 2< 1 —x = a (say), the given integral

1 pl1-x pl-x-y
I= J J J xbL ym L 2l dz dy dx
0oJo Jo

- J'Ol E| [J': joa_y ym ezl gy dy] dx

_ J‘l E I'(m)I'(n)
0 I'im+n+1
I'(m) I'(n)

1
=—~ " | ' -x)""dx, sincea=1-—x
I'lm+n+1 Jo ( ) !

a™" dx (from above)

:MB(Z,WL*‘M‘FI)

I'lm+n+1

Fm)T(n) TAOTm+n+1)  TOITm) (n)
CTm+n+) TU+m+n+1) TU+m+n+1)’

Generalization. Dirichelet’s integral can be generalized to n variables :

L-1 -1 -1
J.J. J. xll x22 ...... X, dxl dx2 ...... dxn

_ YT ...... rd,)
L+ +...... +0,+1

where the integral is extended to all positive values of the variables subject to the condition
X, tx, o +x <1

We give below some examples illustrating the use of Dirichlet’s integral in
evaluating double and triple integrals.

x z )
Example 1. The plane ;+%+Z = 1 meets the axes in A, B and C. Apply

Dirichlet’s integral to find the volume of the tetrahedron OABC. Also, find its mass if
the density at any point is kxyz.

Sol. Put = =X, % =y, 2=y
Then, X>20,Y20,Z20and X+Y+Z<1
Also, dy=adX, dy=bdY, dz=cdZ.
Volume OABC = j j dx dy dz
D
= [[] abe dxX av dz, where X+ Y+ z<1
LS
= abe [[] xT1Y11 20 du de du
LS
B rHrara  abc  abe B
=abe T Iy 14D - 31 T § ¢ TM=D
Mass = Hj (k xyz) dx dy dz
D

= {[] #@% ©Y) (2) abe dx @y dz
2
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Calculus—II b a? b2 c? 'UJ‘ X2-1Y21 721 dy dv dw
D

['(2)T(2) T(2) 11111 ka?b%c?
=k a?b?c? ————— " =P a? b? ¢? = .
NOTES Y Ter2r2+n U T 720

Example 2. (i) Evaluate Hj xtHL ym1 zn-l dy dy dz, where x, y, z are always

.. .. . ' () (z)
positive but limited by the condition | —| + > +|=| <1
a c

@) Show that if I, m, n are all positive,

s zine T

8 Iﬂ(l+m+n+2j

2
X2 2 2
where the triple integral is taken throughout the ellipsoid —+ 2’—2 +— = 1, which lies
a c
i first octant.
p q r
Sol. (i) Put (f) =X, (XJ =Y, (i) =7
a b c
= x=aX¥, y=bYY z= /"
a
= dx = r X1 dX, ete.
lgm .n [——l) [——1) n_q
given integral = H_[ @bt X\ oyt Z[’ ) dX dY dZ
par

where X+ Y+ Z< 1.

e o))

; . (By Dirichlet’s integral)
par F(+m+n+ 1)

p q T

(1) Proceed as in part (i) takingp =q=r=2.
Example 3. Using Dirichlet’s integral, evaluate the volume of the ellipsoid

2 2 2
x° y° oz
S+ 5 =1
a® b ¢?
Sol. Volume V=8 Hj dx dy dz. (Using symmetry)
2 2 2
wherex>0,y>0,z>0 and x_2+y_2+z_2 <1.
a b c
2 2 2
x y z
Put X=— ,Y=%5 ,2=—
u o2 b2 2
= x= (IX1/2, y= bYl/2, z= Czll2
1
= deEaX1’2*1dX,etc.andXZO,YZO,ZZO,X+Y+ZS1‘
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V=8 JJ:[ % abe X1/2—1 &r1/2—1 Z1/2—1 dX dY d7

o)1)

= abc (Using Dirichlet’s integral)
1 1 1
MN-+-+-+1
2 2 2
=abe =Y = = 7 abe
31,3
2°2
Example 4. Using Dirichlet’s theorem, find the volume bounded by the surface
2 2 4
Yy 2 _
—t b_2 + C—4 =1
Sol. V=8 [[[ dxdyd
2 2 4
x y z
Put X=%  Y=%,72=—
o2 b2 ot
= x=aX2 y=bY2 z = /M4
a b c
= dx = Py X121 dX, dy = Py YY1 qY, d7 = 1 VAl V/

abe
_ Q8OC 11921 1721 7174-1 r
V—8Hj 16 X Y Y/ dX dY dZ

— a_bc J:[ X1/271 Y1/271 Zl/471 dX dY d7
2

1 1 1 1 1
et Zabernrl =
_abc F(ZJF(ZJF(LJ 2 2T (‘J _ 8mabc

2 1 1 1 5 1 (1) 5
Sy 2.1 =
F(2+2+4+1) 44 (4
Example 5. Using Dirichlet’s integral, show that the volume of the solid equation
whose surface is

(2)2/3 . (2)2/3 . (3)2/3 L 41 abe
a b c -

Sol. V=8 [[[ dxdyd
x 2/3 2/3 p 2/3
el
a b c
= x = GX3/2, y= bY3/2 2= 732
3 3 3
= dx = E aXi/2 dX, dy= E bY1/2 dY, dz= E cZV2 d7,

v=s|[f % abe X2 Y12 712 X dY d7,

where X+Y+7<1
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Calculus—II
=27 abe jj X3/271 Y3/271 23/271 dX dY d7

f(3)3) s
NOTES =27 abc

F(3+3+3+1)
2 2 2

=27abc2 2 %1
%)
2
97 abe x L A%
acxgn 00 :4nabc
7 5 3 1\/; 35

1><1><1><1tx/5 ( (3
A

LIOUVILLE’S EXTENSION OF DIRICHLET’S THEOREM

rMrm)r(@n) (h:

-1 (;m-1 ,n-1 =
j” Fx+y+z)xH-lymlzr-l dx dy dz = Id+m+n) Jn,

Proof is beyond the scope of this book.

Dirichlet's theorem.

Sol. The given integral

- Hj xM21 U212 P+ y + 2) dy dy dz

where Fe+y+2) = (1 —-x—y—2)!2

T 1.{.1.{.1
2 2 2

_ h)1/2)

J i) e e

_
r(3+3) 2.1 4
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If x, y, z are all positive such that h, <x+y+z<h,, then

F(h) . htm*n-1 dh,

Note that LIOUVILLE'S extension can be extended to n variables.
Let us give below some examples illustrating the use of Liouville’s extension of

Example 6. Evaluate Hj x ey 12 U201y )2 dx dy dz extended to

all positive values of the variable subject to the condition x +y +z < 1.

o) o)) p
— J‘O (1 _ h)1/2 ) h1/2+1/2+1/271dh ( F(h) — (1



Example 7. Fvaluate the double integral
I= ” X172 912 (1 x — )28 dy dy
over the region bounded by the lines x =0,y =0, x +y = 1.
Sol. I= H K12 Y2 (1 — x — )28 dx dy

- H 21 4321 Py + y) dx dy

where F(x + y) = (1 —x — y)??
a)rs)

_ m jo (1 Ry R2+320 gp o F(h) = (1— )2

303 )

2 2
re® F(5 + 3)

LIS

SRR o o2)es]

8
'3
Example 8. FEvaluate H log (x +y +2) dx dy dz, the integral extending over all

positive values x, y, z subject to the condition x +y +z < 1.

Sol. Hj log (x+y+2)dxdydz= Hj Yyl 2L Fe +y +2) de dy dz,

where F(x, y, z) =log (x +y +2)

_IMHrara@ 1 41411 S
= TTA+1s D 11+ 1) J Fi) . h dh (Liouville’s Theorem)

1 1.1

J h?log h dh (Integrating by parts)
1

1 R® 11 A?

==3llogh)—| - | =.—dh
{[(Og)3}0 073 },etc

1

18

1

Here lim A3 log A = lim 10%3}1 = lim —" = 1im | -
50 =0 h h%0_3h_4 r>0

2
Example 9. Prove that Hj dx dy dz dw = §—2 (b* —a?), where the integral is for

all values of the variables for which x° + y? + 22 + w? lies between a and b2, (a <b).
Sol. The given integral I is subject to the condition a? < x? + y% + 2% + w? < b?
Putting 22=X,32=Y,22=7, u?=W
= x=XU2 y=YU2 5 =712 = W2
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Calculus—II 1
= dx = 5 X172 dX, ete.

1
- 12 N-1/2 7112 W-1/2 ,
NOTES 1= 16 m XUz Y112 712 W2 X dY dZ dW

1
_ 1/2-1 /21 71/2-1 Wi/e-1 r
=16 J._”.X Y Z W dX dY dZ dW

fa)la)ra)ra) v
i 2 2 2 2 J‘ h1/2 +1/2+1/2+1/2-1 dh

16 F(1+1+1+1) a®

2 2 2 2
4 b2
= 1((\3@22) , h.dh (Liouville’s theorem)
a

2
T
=— (b*-a%).
32( )
Example 10. Evaluate ”J etV  dxdydz, x>0,y>0,z>0andx+y +z< 1.

Sol. Here, I = HJ. e*TYTE y1-1 1ol 211 gy dy dz,

Fa+y+z)=e"7%? 0<x+y+z<1

[= % jol F(h). 11717 1gp (By Liouville’s theorem)
_ 1'1'1j1eh 2 di
2.1. Jo
(Integrating by lasts, taking h? as first function)
1
= Py (e —2).

EXERCISE 10.1

1. Show that the volume of the solid bounded by the coordinate planes and the surface

R \/Z + \/E =1lis a_bc‘
a b c 920
V2 1/2 N
Hint. Put X = (_) Y = (l) = (—) , etc.
a b c
2 2

x
2. Show that ”‘ a1 yn=1 dx dy over the positive octant of the ellipse —5 + ’Z}—Z =1is
a

m n
a” b B(m n+1)

2n ?’E

lmnt. pur (2] ox (2] - Y}

3. Using Dirichlet’s integral, show that the volume of the solid whose surface is repre-
4 4 4

x y z (abc) 42 1 4
ted be the ecuation Fo s X0 20 L (abo V2 (r(—)) |
sente y e equa 10N a4 b4 c4 1S 121.[ 4
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10.

2 2 2
x z

Show that the mass of an octant of the ellipsoid —5 + 2}—2 +— =1, the density at any
a c

ka? b? c?
48
Show that volume in the first octant determined by the surface x* +y" +2z" =a", (n > 0)

o

2n 2n 2n
Show that the volume enclosed by the surface (ij + (%) + (i) =1, n being a
a c

3

2abc [F(lj]
2n

3n? F(i)

2n

Show that the value of the integral J:U x*yP 2¥ (1 —x—y —2)* dx dy dz over the interior

point being p =k xyz is

a

positive integer is

of the tetrahedron formed by the coordinate planes and the plane x+y +z=11s

Mo+ DIP+HTYy+DHITA+1
Fo+P+y+i+1) '

Show that I = _U L ym gl (1 —x—y—2tdxdydz (I, m,n, p=1)taken over the

') T'(m) T'(n) T'(p)
rl+m+n+ p)

tetrahedron bounded by the planes x=0,y=0,z=0,x+y+z=11s

31
Prove that J.J. (x+y+z+1)2dxdydz= B0
D

where the domain is defined by x>0,y>0,2>0,x+y+2z<1.

2
n
. 2 2 2 = —
Prove.'UJ J1-x2 —y2 - 22 dxdydz 32
R

where R is the region interior to the sphere x? + y2 + 22 = 1.
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